Fluid Mechanics

| Peer-Reviewed |

The Influences of Optical Forces on the Lattice Structure of Electrorheological Suspensions

Received: 23 August 2018    Accepted: 11 September 2018    Published: 20 June 2019
Views:       Downloads:

Share This Article

Abstract

In order to investigate the influences of the optical forces on the lattice structure of an electrorheological (ER) suspension, on the basis of the experiment of Michael M. Burns etal., comparing their sample with an Electrorheological suspension, this paper substantially discusses the influences of intense light beams on the interaction between the dielectric particles immersed in electrorheological suspensions (ER). It respectively calculates out the optical forces exerted either on the polystyrene spheres in the sample of Michael M. Burns etal. Or on the corn-starch spheres in an ER suspension, the calculation results of this paper show that increasing the intensities of the incident laser beams or the gradient of the applied electric field can generate stronger optical forces acting on the spherical dielectric particles in an ER fluid than acting on those spheres with nearly the same mass and figuration in the suspension sample of Michael M. Burns etal.. Similar to the experimental result of Michael M. Burns et al., when increasing the intensities of the incident laser beams or the gradient of the electric field up to a critical value, it will give rise to the optical crystallization and optical binding of ER suspensions.

DOI 10.11648/j.fm.20190501.14
Published in Fluid Mechanics (Volume 5, Issue 1, June 2019)
Page(s) 26-29
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Dielectric Particles, Oscillator, Optical Forces, Optical Standing Wave Fields, Optical Crystallization, Lattice Structure

References
[1] Winslow W M. Induced Fibration of Suspensions [J]. J. Appl. Of Physics, 1949, 20: 1137-1140.
[2] Block H and Kelly J P. Electronheological Fluids: U. S.4 687589 (P). 1987-08-18.
[3] Filisko F E and Armstrong W E. Electric field dependent fluids: U. S.4744914 (P). 1988-05-17.
[4] Jaggi N K and Woestman J. On the Nature of Electric Field Induced Solification in Some Two Phase Systems [J]. Bull. Amer. Phys. Soc., 1989, 34(3): 1019.
[5] Halsey T C and Toor W. Structure of Electrorheological Fluids [J]. Phys. Rev. Lett., 1990, 65(22): 2820-2823.
[6] Klingenberg D J, Swol F V and Zukoski C F. J. Dynamic Simulation of Electrorheological Suspensions [J]. J. Chem. Phys., 1989, 91(12): 7888-7894.
[7] Gonon P and Foulc J-N. Temperature dependence of particle-particle interactions in electrorheological fluids [J]. J. of Appl. Phys., 2000, 87(7): 3563-3566.
[8] Chen T J, Zitter R N and Tao R. Laser Diffraction Determination of the Crystalline Structure of an Electrorheological Fluid [J]. Phys. Rev. Lett., 1992, 68(16): 2555-2558.
[9] Tao R and Sun J M. Three-dimentional Structure of Induced Electrorheological Solid [J]. Phys. Rev. Lett., 1991, 67(3): 398-401.
[10] Huang X, Tam W Y and Sheng P. Structural transition in bidispersed electrorheological fluids [J]. Phys. Rev. E 2005, 72: 020501(R).
[11] Ashkin A. Applications of laser Radiation Pressure [J]. Science, 1980, 210: 1081-1088.
[12] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Opt. Lett. 1986, 11: 288-290.
[13] Novitsky A V. Scattered field generation and optical forces in transformation optics [J]. Journal of Optics, 2016, 18(4): 044021.
[14] Yang Y, Jiang X, Ruan B, Dai X, and Xiang Y. Tunable optical forces exerted on a black phosphorus coated dielectric particle by a Gaussian beam [J]. Optical Materials Express, 2018, 8(2): 211-220.
[15] Spadarov D, Lativ M A, Perez-Pineiro J, Vazquez-Vazquez C, Correa-Duarte M A, Donato M G, Gucciardi P G, Saija R, Strangi G, and Marago O M. Optical Trapping of Plasmonic Mesocapsules: Enhanced Optical Forces and SERS [J]. J Phys Chem C, 2017(print press), 121(1): 691-700.
[16] Burns M M, Fournier J M, Golovchenko J A. Optical Matter: Crystallization and Binding in Intense Optical Fields [J]. Science, 1990, 249: 749754.
[17] Yablonovitch E. Inhabited Spontaneous Emission in Solid-State Physics and Electronics [J]. Phys. Rev. Lett., 1987, 58(20): 2059-2062.
[18] Burns M M, Fournier J M and Golovchenko J A. Optical Binding [J]. Phys. Rev. Lett., 1989, 63(12): 1233-1236.
Author Information
  • Department of Physics, Hunan Normal University, Changsha, China

Cite This Article
  • APA Style

    Zhang Yue. (2019). The Influences of Optical Forces on the Lattice Structure of Electrorheological Suspensions. Fluid Mechanics, 5(1), 26-29. https://doi.org/10.11648/j.fm.20190501.14

    Copy | Download

    ACS Style

    Zhang Yue. The Influences of Optical Forces on the Lattice Structure of Electrorheological Suspensions. Fluid Mech. 2019, 5(1), 26-29. doi: 10.11648/j.fm.20190501.14

    Copy | Download

    AMA Style

    Zhang Yue. The Influences of Optical Forces on the Lattice Structure of Electrorheological Suspensions. Fluid Mech. 2019;5(1):26-29. doi: 10.11648/j.fm.20190501.14

    Copy | Download

  • @article{10.11648/j.fm.20190501.14,
      author = {Zhang Yue},
      title = {The Influences of Optical Forces on the Lattice Structure of Electrorheological Suspensions},
      journal = {Fluid Mechanics},
      volume = {5},
      number = {1},
      pages = {26-29},
      doi = {10.11648/j.fm.20190501.14},
      url = {https://doi.org/10.11648/j.fm.20190501.14},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.fm.20190501.14},
      abstract = {In order to investigate the influences of the optical forces on the lattice structure of an electrorheological (ER) suspension, on the basis of the experiment of Michael M. Burns etal., comparing their sample with an Electrorheological suspension, this paper substantially discusses the influences of intense light beams on the interaction between the dielectric particles immersed in electrorheological suspensions (ER). It respectively calculates out the optical forces exerted either on the polystyrene spheres in the sample of Michael M. Burns etal. Or on the corn-starch spheres in an ER suspension, the calculation results of this paper show that increasing the intensities of the incident laser beams or the gradient of the applied electric field can generate stronger optical forces acting on the spherical dielectric particles in an ER fluid than acting on those spheres with nearly the same mass and figuration in the suspension sample of Michael M. Burns etal.. Similar to the experimental result of Michael M. Burns et al., when increasing the intensities of the incident laser beams or the gradient of the electric field up to a critical value, it will give rise to the optical crystallization and optical binding of ER suspensions.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Influences of Optical Forces on the Lattice Structure of Electrorheological Suspensions
    AU  - Zhang Yue
    Y1  - 2019/06/20
    PY  - 2019
    N1  - https://doi.org/10.11648/j.fm.20190501.14
    DO  - 10.11648/j.fm.20190501.14
    T2  - Fluid Mechanics
    JF  - Fluid Mechanics
    JO  - Fluid Mechanics
    SP  - 26
    EP  - 29
    PB  - Science Publishing Group
    SN  - 2575-1816
    UR  - https://doi.org/10.11648/j.fm.20190501.14
    AB  - In order to investigate the influences of the optical forces on the lattice structure of an electrorheological (ER) suspension, on the basis of the experiment of Michael M. Burns etal., comparing their sample with an Electrorheological suspension, this paper substantially discusses the influences of intense light beams on the interaction between the dielectric particles immersed in electrorheological suspensions (ER). It respectively calculates out the optical forces exerted either on the polystyrene spheres in the sample of Michael M. Burns etal. Or on the corn-starch spheres in an ER suspension, the calculation results of this paper show that increasing the intensities of the incident laser beams or the gradient of the applied electric field can generate stronger optical forces acting on the spherical dielectric particles in an ER fluid than acting on those spheres with nearly the same mass and figuration in the suspension sample of Michael M. Burns etal.. Similar to the experimental result of Michael M. Burns et al., when increasing the intensities of the incident laser beams or the gradient of the electric field up to a critical value, it will give rise to the optical crystallization and optical binding of ER suspensions.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

  • Sections