American Journal of Nanosciences

| Peer-Reviewed |

Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity

Received: 26 July 2017    Accepted: 16 August 2017    Published: 18 December 2017
Views:       Downloads:

Share This Article

Abstract

In this study, the nano rods of molybdenum oxide were prepared by the thermo chemical method. The prepared molybdenum oxide nano rods were characterized by UV-Visible spectrophotometer, band gap energy, FT-IR spectrophotometer, XRD, SEM, and TEM techniques. The prepared molybdenum oxide nano rods were used for anti bacterial activity. The XRD analysis showed the formation of crystalline nano rods. The FT-IR and UV-Vis analysis give the peak at 1120 cm-1 and 246 nm which confirm the formation of nano rods. The SEM and TEM analysis also confirmed the formation of nano rods. The band gap energy of MoO3 nano rods were observed 3.67, 3.54, 3.45 and 3.36 eV at 400, 500, 600 and 700°C temperatures. The MoO3 nano rods gave the positive antibacterial activity against S. Aureus pathogens.

DOI 10.11648/j.ajn.20170304.12
Published in American Journal of Nanosciences (Volume 3, Issue 4, December 2017)
Page(s) 81-85
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Molybdenum Oxide, S. Aureus, Nano Rods, Band Gap Energy

References
[1] Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, G. D. Stucky, NanoLett. 9, 4215–4220 (2009).
[2] D. P. Debecker, M. Stoyanova, U. Rodemerck, E. M. Gaigneaux, Stud. Surf. Sci. Catal. 175, 581–585 (2010).
[3] Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J. Zhu, Cryst. Eng. Comm. 12, 3740-3747 (2010).
[4] C. Raj, A. C. Bose, Beilstein J. Nanotechnol. 2, 585–592(2011).
[5] S. Ganguly, R. George, Bull. Mater. Sci. 30, 183–185(2007).
[6] W. Dong, H. Huang, Y. Zhu, X. Li, X. Wang, C. Li, B. Chen, G. Wang, Z. Shi, Nanotechnology 23, 425602 (2012).
[7] L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu, C. Yu, J. Phys. Chem. C 114, 21868-21872 (2010).
[8] A. M. Hashema, H. Groult, A. Mauger, K. Zaghib, C. M. Julien, J. Power Sources 219 126-132(2012).
[9] Q. Xia, H. Zhao, Z. Du, J. Wang, T. Zhang, J. Wang, P. J. Power Sources 226, 107-111 (2013).
[10] F. J. Zhang, D. W. Zhao, Z. L. Zhuo, H. Wang, Z. Xu, Y. S. Wang, Sol. Energy Mater. Sol. Cells 94, 2416-2421 (2010).
[11] F. Cheng, G. Fang, X. Fan, N. Liu, N. Sun, P. Qin, Q. Zheng, J. Wan, X. Zhao, Sol. Energy Mater. Sol. Cells 95, 2914–2919 (2011).
[12] M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Organic Electronics, 10, 932-938 (2009).
[13] K. Bange, Sol. Energy Mater. Sol. Cells 58, 1-131 (1999).
[14] X. W. Lou, H. C. Zeng, Chem. Mater. 14, 4781–4789 (2002).
[15] P. Badica, Cryst. Growth Des. 7, 794-801 (2007).
[16] N. A. Chernova, M. Roppolo, A. C. Dillon, M. S. Whittingham, J. Mater. Chem. 19 2526–2552 (2009).
[17] J. Song, X. Ni, L. Gao, L. Zheng, Chem. Phy. 102, 245–248(2007).
[18] S. S. Mahajan, S. H. Mujawar, P. S. Shinde, A. I. Inamdar, P. S. Patil, Int. J. Electrochem. Sci. 3, 953-960 (2008).
[19] C. Raj, A. C. Bose, J. Alloys Compd. 509, 8105-8110 (2011).
[20] L. P. M. Cai, X. R. Zheng, NanoLett. 11, 872–877 (2011).
[21] B. B. Wang, K. Zhu, J. Feng, J. Y . Wu, R. W. Shao, K. Zheng, Q. J. Cheng, Journal of Alloys and Compounds, 661, 66-71 (2016)
[22] D. Y. Park, Y. K. Sun, S. T. Myung, Journal of Power Sources, 280, 1-4 (2015).
[23] C. A. Ellefson, O. Marin-Flores, S. Ha, M. G. Norton, J. Mater. Sci. 47, 2057-2071 (2012).
[24] J. Song, X. Ni, D. Zhang, H. Zheng, Solid State Sci. 8, 1164-1167 (2006).
[25] K. V. Özdokur, A. Y. Tatlı, B. Yılmaz, S. Koçak, F. N. Ertaş, Int. J. of Hydrogen Energy, 41, 5927-5933 (2016).
[26] A. Kumar and G. Pandey, Chemical Science Transactions 2017, 6(3), 385-392, DOI:10.7598/cst2017.1378
[27] M. Karthikeyan, S. Um, Thin Solid Films, 606, 63-73 (2016).
[28] A. Kumar, G. Pandey, Desalination and Water Treatment, 71 (2017) 406–419, doi: 10.5004/dwt.2017.20541
[29] R. Yuksel, S. Coskun, H. E. Unalan, Electrochimica Acta, 193, 39-44 (2016).
[30] A. Kumar, G. Pandey, Chem Sci J 8: (2017) 164. doi: 10.4172/2150-3494.1000164
[31] A. Kumar, D. Kumar, G. Pandey. J. Technological Advances and Scientific Res. 2016; 2(4):166-169, DOI: 10.14260/jtasr/2016/29
[32] Y. Song, Y. Zhao, Z. Huang, J. Zhao, Journal of Alloys and Compounds, 693, 1290-1296 (2017).
[33] A. Kumar, G. Hitkari, M. Gautam, S. Singh, G. Pandey, Int. Adv. Res. J. in Sci.e, Engi. and Tech., 2, 12, 2015, 50-55, DOI 10.17148/IARJSET.2015.21208
[34] M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, Solar Energy Materials and Solar Cells, 142, 34-41 (2015).
[35] A. Kumar, G. Hitkari, M. Gautam, S. Singh, G. Pandey, Int. Journal Inno. Res. in Sci., Eng. and Tech.,. 4, 12, 2015, 12721-12731, DOI:10.15680/IJIRSET.2015.0412097
[36] A. Kumar, G. Pandey. American J. of Nano Research and Appli. Vol. 5, No. 4, 2017, pp. 40-48. doi: 10.11648/j.nano.20170504.11
[37] F. Delalat, M. Ranjbar, H. SalamatiSolar Energy Materials and Solar Cells, 144, 165-172 (2016).
[38] Cibele, P. D. Volanti, A. E. Nogueira, C. A. Zamperini, Materials & Design, 115, 73-81 (2017).
[39] E. C. Vergani, E. Longo, G. Totea, D. Ionita, I. Demetrescu, Journal of Bionic Engineering, 12, 583-591 (2015).
[40] S. Shafaei, D. V. Opdenbosch, T. Fey, M. Koch, T Kraus, J. P. Guggenbichler, C. Zollfrank, Materials Science and Engineering: C, 58, 1064-1070 (2016).
Author Information
  • Department of Applied Chemistry, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India

  • Department of Applied Chemistry, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Cite This Article
  • APA Style

    Azad Kumar, Gajanan Pandey. (2017). Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity. American Journal of Nanosciences, 3(4), 81-85. https://doi.org/10.11648/j.ajn.20170304.12

    Copy | Download

    ACS Style

    Azad Kumar; Gajanan Pandey. Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity. Am. J. Nanosci. 2017, 3(4), 81-85. doi: 10.11648/j.ajn.20170304.12

    Copy | Download

    AMA Style

    Azad Kumar, Gajanan Pandey. Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity. Am J Nanosci. 2017;3(4):81-85. doi: 10.11648/j.ajn.20170304.12

    Copy | Download

  • @article{10.11648/j.ajn.20170304.12,
      author = {Azad Kumar and Gajanan Pandey},
      title = {Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity},
      journal = {American Journal of Nanosciences},
      volume = {3},
      number = {4},
      pages = {81-85},
      doi = {10.11648/j.ajn.20170304.12},
      url = {https://doi.org/10.11648/j.ajn.20170304.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajn.20170304.12},
      abstract = {In this study, the nano rods of molybdenum oxide were prepared by the thermo chemical method. The prepared molybdenum oxide nano rods were characterized by UV-Visible spectrophotometer, band gap energy, FT-IR spectrophotometer, XRD, SEM, and TEM techniques. The prepared molybdenum oxide nano rods were used for anti bacterial activity. The XRD analysis showed the formation of crystalline nano rods. The FT-IR and UV-Vis analysis give the peak at 1120 cm-1 and 246 nm which confirm the formation of nano rods. The SEM and TEM analysis also confirmed the formation of nano rods. The band gap energy of MoO3 nano rods were observed 3.67, 3.54, 3.45 and 3.36 eV at 400, 500, 600 and 700°C temperatures. The MoO3 nano rods gave the positive antibacterial activity against S. Aureus pathogens.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity
    AU  - Azad Kumar
    AU  - Gajanan Pandey
    Y1  - 2017/12/18
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajn.20170304.12
    DO  - 10.11648/j.ajn.20170304.12
    T2  - American Journal of Nanosciences
    JF  - American Journal of Nanosciences
    JO  - American Journal of Nanosciences
    SP  - 81
    EP  - 85
    PB  - Science Publishing Group
    SN  - 2575-4858
    UR  - https://doi.org/10.11648/j.ajn.20170304.12
    AB  - In this study, the nano rods of molybdenum oxide were prepared by the thermo chemical method. The prepared molybdenum oxide nano rods were characterized by UV-Visible spectrophotometer, band gap energy, FT-IR spectrophotometer, XRD, SEM, and TEM techniques. The prepared molybdenum oxide nano rods were used for anti bacterial activity. The XRD analysis showed the formation of crystalline nano rods. The FT-IR and UV-Vis analysis give the peak at 1120 cm-1 and 246 nm which confirm the formation of nano rods. The SEM and TEM analysis also confirmed the formation of nano rods. The band gap energy of MoO3 nano rods were observed 3.67, 3.54, 3.45 and 3.36 eV at 400, 500, 600 and 700°C temperatures. The MoO3 nano rods gave the positive antibacterial activity against S. Aureus pathogens.
    VL  - 3
    IS  - 4
    ER  - 

    Copy | Download

  • Sections