Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity
American Journal of Applied and Industrial Chemistry
Volume 3, Issue 3, June 2017, Pages: 38-42
Received: Jul. 26, 2017; Accepted: Aug. 16, 2017; Published: Sep. 12, 2017
Views 334      Downloads 16
Authors
Azad Kumar, Department of Applied Chemistry, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
Gajanan Pandey, Department of Applied Chemistry, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
Article Tools
Follow on us
Abstract
In this study, the nano rods of molybdenum oxide were prepared by the thermo chemical method. The prepared molybdenum oxide nano rods were characterized by UV-Visible spectrophotometer, band gap energy, FT-IR spectrophotometer, XRD, SEM, and TEM techniques. The prepared molybdenum oxide nano rods were used for anti bacterial activity. The XRD analysis showed the formation of crystalline nano rods. The FT-IR and UV-Vis analysis give the peak at 1120 cm-1 and 246 nm which confirm the formation of nano rods. The SEM and TEM analysis also confirmed the formation of nano rods. The band gap energy of MoO3 nano rods were observed 3.67, 3.54, 3.45 and 3.36 eV at 400, 500, 600 and 700°C temperatures. The MoO3 nano rods gave the positive antibacterial activity against S. Aureus pathogens.
Keywords
Molybdenum Oxide, S. Aureus, Nano Rods, Band Gap Energy
To cite this article
Azad Kumar, Gajanan Pandey, Synthesis, Characterization, Effect of Temperature on Band Gap Energy of Molybdenum Oxide Nano Rods and Their Antibacterial Activity, American Journal of Applied and Industrial Chemistry. Vol. 3, No. 3, 2017, pp. 38-42. doi: 10.11648/j.ajaic.20170303.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, G. D. Stucky, NanoLett. 9, 4215–4220 (2009).
[2]
D. P. Debecker, M. Stoyanova, U. Rodemerck, E. M. Gaigneaux, Stud. Surf. Sci. Catal. 175, 581–585 (2010).
[3]
Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J. Zhu, Cryst. Eng. Comm. 12, 3740-3747 (2010).
[4]
C. Raj, A. C. Bose, Beilstein J. Nanotechnol. 2, 585–592(2011).
[5]
S. Ganguly, R. George, Bull. Mater. Sci. 30, 183–185(2007).
[6]
W. Dong, H. Huang, Y. Zhu, X. Li, X. Wang, C. Li, B. Chen, G. Wang, Z. Shi, Nanotechnology 23, 425602 (2012).
[7]
L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu, C. Yu, J. Phys. Chem. C 114, 21868-21872 (2010).
[8]
A. M. Hashema, H. Groult, A. Mauger, K. Zaghib, C. M. Julien, J. Power Sources 219 126-132(2012).
[9]
Q. Xia, H. Zhao, Z. Du, J. Wang, T. Zhang, J. Wang, P. J. Power Sources 226, 107-111 (2013).
[10]
F. J. Zhang, D. W. Zhao, Z. L. Zhuo, H. Wang, Z. Xu, Y. S. Wang, Sol. Energy Mater. Sol. Cells 94, 2416-2421 (2010).
[11]
F. Cheng, G. Fang, X. Fan, N. Liu, N. Sun, P. Qin, Q. Zheng, J. Wan, X. Zhao, Sol. Energy Mater. Sol. Cells 95, 2914–2919 (2011).
[12]
M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Organic Electronics, 10, 932-938 (2009).
[13]
K. Bange, Sol. Energy Mater. Sol. Cells 58, 1-131 (1999).
[14]
X. W. Lou, H. C. Zeng, Chem. Mater. 14, 4781–4789 (2002).
[15]
P. Badica, Cryst. Growth Des. 7, 794-801 (2007).
[16]
N. A. Chernova, M. Roppolo, A. C. Dillon, M. S. Whittingham, J. Mater. Chem. 19 2526–2552 (2009).
[17]
J. Song, X. Ni, L. Gao, L. Zheng, Chem. Phy. 102, 245–248(2007).
[18]
S. S. Mahajan, S. H. Mujawar, P. S. Shinde, A. I. Inamdar, P. S. Patil, Int. J. Electrochem. Sci. 3, 953-960 (2008).
[19]
C. Raj, A. C. Bose, J. Alloys Compd. 509, 8105-8110 (2011).
[20]
L. P. M. Cai, X. R. Zheng, NanoLett. 11, 872–877 (2011).
[21]
B. B. Wang, K. Zhu, J. Feng, J. Y . Wu, R. W. Shao, K. Zheng, Q. J. Cheng, Journal of Alloys and Compounds, 661, 66-71 (2016)
[22]
D. Y. Park, Y. K. Sun, S. T. Myung, Journal of Power Sources, 280, 1-4 (2015).
[23]
C. A. Ellefson, O. Marin-Flores, S. Ha, M. G. Norton, J. Mater. Sci. 47, 2057-2071 (2012).
[24]
J. Song, X. Ni, D. Zhang, H. Zheng, Solid State Sci. 8, 1164-1167 (2006).
[25]
K. V. Özdokur, A. Y. Tatlı, B. Yılmaz, S. Koçak, F. N. Ertaş, Int. J. of Hydrogen Energy, 41, 5927-5933 (2016).
[26]
A. Kumar and G. Pandey, Chemical Science Transactions 2017, 6(3), 385-392, DOI:10.7598/cst2017.1378
[27]
M. Karthikeyan, S. Um, Thin Solid Films, 606, 63-73 (2016).
[28]
A. Kumar, G. Pandey, Desalination and Water Treatment, 71 (2017) 406–419, doi: 10.5004/dwt.2017.20541
[29]
R. Yuksel, S. Coskun, H. E. Unalan, Electrochimica Acta, 193, 39-44 (2016).
[30]
A. Kumar, G. Pandey, Chem Sci J 8: (2017) 164. doi: 10.4172/2150-3494.1000164
[31]
A. Kumar, D. Kumar, G. Pandey. J. Technological Advances and Scientific Res. 2016; 2(4):166-169, DOI: 10.14260/jtasr/2016/29
[32]
Y. Song, Y. Zhao, Z. Huang, J. Zhao, Journal of Alloys and Compounds, 693, 1290-1296 (2017).
[33]
A. Kumar, G. Hitkari, M. Gautam, S. Singh, G. Pandey, Int. Adv. Res. J. in Sci.e, Engi. and Tech., 2, 12, 2015, 50-55, DOI 10.17148/IARJSET.2015.21208
[34]
M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, Solar Energy Materials and Solar Cells, 142, 34-41 (2015).
[35]
A. Kumar, G. Hitkari, M. Gautam, S. Singh, G. Pandey, Int. Journal Inno. Res. in Sci., Eng. and Tech.,. 4, 12, 2015, 12721-12731, DOI:10.15680/IJIRSET.2015.0412097
[36]
A. Kumar, G. Pandey. American J. of Nano Research and Appli. Vol. 5, No. 4, 2017, pp. 40-48. doi: 10.11648/j.nano.20170504.11
[37]
F. Delalat, M. Ranjbar, H. SalamatiSolar Energy Materials and Solar Cells, 144, 165-172 (2016).
[38]
Cibele, P. D. Volanti, A. E. Nogueira, C. A. Zamperini, Materials & Design, 115, 73-81 (2017).
[39]
E. C. Vergani, E. Longo, G. Totea, D. Ionita, I. Demetrescu, Journal of Bionic Engineering, 12, 583-591 (2015).
[40]
S. Shafaei, D. V. Opdenbosch, T. Fey, M. Koch, T Kraus, J. P. Guggenbichler, C. Zollfrank, Materials Science and Engineering: C, 58, 1064-1070 (2016).
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931