| Peer-Reviewed

Hydrothermal Synthesis, Physico-Chemical Characterization and Electrochemical Behavior of β-MnO2 Nanorods

Received: 30 August 2016    Accepted: 7 October 2016    Published: 17 October 2016
Views:       Downloads:
Abstract

A simple hydrothermal method was developed for the synthesis ofpyrolosite β-MnO2 nanorods, using potassium permanganate (KMnO4), manganese sulfate (MnSO4.H2O) and oxalic acid (H2C2O4). The effects of the reaction time, the hydrothermal temperature and the amount of H2C2O4 on the structure and the morphology of the final products were studied. The β-MnO2 nanorods are up to several micrometers in length and about 37 nm in average diameter. The samples were analyzed through X-ray diffraction (DRX), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. Electrochemical measurements of thin film of β-MnO2 nanorods have revealed reversible redox behavior with charge-discharge cycling processes corresponding to reversible cations intercalation/deintercalation into the crystal lattice. This process is easier for the small Li+ to the larger Na+ one and to the largest K+ cation.

Published in American Journal of Nanosciences (Volume 2, Issue 1)
DOI 10.11648/j.ajn.20160201.11
Page(s) 1-7
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Nanostructures, Hydrothermal Synthesis, X-ray Diffraction, Electrochemical Properties

References
[1] T. You, J. Yan, Z. Zhang, J. Li, J. Tian, J. Yun, W. Zhao, Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process, Mater. Lett. 66 (2012) 246-249.
[2] H. F. Xu, Y. Liu, N. Wei, S. W. Jin, From VO2(B) toVO2(A) nanorods Hydrothermal synthesis, evolution and optical properties in V2O5-H2C2O4-H2O system, Optik 125 (2014) 6078-6081.
[3] J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, Synthesis of large-scaled MoO2 nanowire arrays, Chem. Phys. Lett. 382 (2003) 443-446.
[4] D. J. Ham, A. Phuruangrat, S. Thongtem, J. S. Lee, Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water, Chem. Eng. J. 165 (2010) 365-369.
[5] H. Li, W.-L. Wang, F. Pan, X. Xin, Q. Chang, X. Liu, Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM. Mat. Sci. Eng. B–Solid 176 (2011) 1054-1057.
[6] Y. Zhu, M. Shen, Y. Xia, M. Lu, Au/MnO2 nanostructured catalysts and their catalytic performance for the oxidation of 5-(hydroxymethyl)furfural, Catal. Commun. 64 (2015) 37-43.
[7] T. D. Dongale, P. R. Jadhav, G. J. Navathe, J. H. Kim, M. M. Karanjkar, P. S. Patil, Development of nano fiber MnO2 thin film electrode and cyclic voltammetry behavior modeling using artificial neural network for supercapacitor application, Mat. Sci. Semicon. Proc. 36 (2015) 43-48.
[8] N. Li, W. Huang, Q. Shi, Y. Zhang, L. Song, A CTAB-assisted hydrothermal synthesis of VO2(B) nanostructures for lithium-ion battery application, Ceram. Int. 39 (2013) 6199-6206.
[9] L. Li, J. Liang, H. Kang, J. Fang, M. Luo, X. Jin, TEA-assisted synthesis of single-crystalline Mn3O4 octahedrons and their magnetic properties, Appl. Surf. Sci. 261 (2012) 717-721.
[10] F. H. B. Lima, M. L. Calegaro, E. A. Ticianelli, Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction, Electrochim. Acta 52 (2007) 3732-3738.
[11] Z. Liu, Y. Xing, C.-H. Chen, L. Zhao, and S. L. Suib, Framework Doping of Indium in Manganese Oxide Materials: Synthesis, Characterization, and Electrocatalytic Reduction of Oxygen, Chem. Mater. 20 (2008) 2069-2071.
[12] S. Shanmugam and A. Gedanken, MnO Octahedral Nanocrystals and MnO@C Core-Shell Composites: Synthesis, Characterization, and ectrocatalytic Properties, J. Phys. Chem. B 110 (2006) 24486-24491.
[13] V. M. B. Crisostomo, J. K. Ngala, S. Alia, A. Dobley, C. Morein, C.-H. Chen, X. Shen, and S. L. Suib, New Synthetic Route, Characterization, and Electrocatalytic Activity of Nanosized Manganite, Chem. Mater. 19 (2007) 1832-1839.
[14] K. Gong, P. Yu, L. Su, S. Xiong, and L. Mao, Polymer-Assisted Synthesis of Manganese Dioxide/Carbon Nanotube Nanocomposite with Excellent Electrocatalytic Activity toward Reduction of Oxygen, J. Phys. Chem. C111 (2007)1882-1887.
[15] S. F. Chin, S. C. Pang, M. A. Anderson, Self-assembled manganese dioxide nanowires as electrode materials for electrochemical capacitors, Mater. Lett. s 64 (2010) 2670-2672.
[16] M. R. Mahmoudiana, Y. Alias, W. J. Basirun, P. M. Woi, M. Sookhakian, Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide, Sensor. Actuat. B-Chem. 201 (2014) 526-534.
[17] M. M. Thackeray, Manganese oxides for lithium batteries, Progr. Solid. State Ch. 25 (1997) 1-71.
[18] J. Zhou, L. Yu, M. Sun, B. Lan, F. Ye, J. He, Q. Yu, MnO2 Nanosheet-Assisted Hydrothermal Synthesis of β-MnO2 Branchy Structures, Mater. Lett. 79 (2012) 288-291.
[19] M. Zhou, X. Zhang, L. Wang, J. Wei, L. Wang, K. Zhu, B. Feng, Growth Process and microwave absorption properties of nanostructured γ-MnO2 urchins, Mater. Chem. Phys. 130 (2011) 1191-1194.
[20] X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, Y. Ma, Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathinbirnessite-type MnO2nanosheets for supercapacitor applications, Electrochim. Acta 89 (2013) 523-529.
[21] G. Cheng, L. Yu, T. Lin, R. Yang, M. Sun, B. Lan, L. Yang, F. Deng, A facile one -pot hydrothermal synthesis of β-MnO2 nanopincers and their catalytic degradation of methylene blue, J. Solid State Chem. 217 (2014) 57-63.
[22] X. Huang, D. Lv, Q. Zhang, H. Chang, J. Gan, Y. Yang, Highly crystalline macroporous β-MnO2: Hydrothermal synthesis and application in lithium battery, Electrochim. Acta 55 (2010) 4915-4920.
[23] D. Su, H.-J. Ahn, and G. Wang, β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries, NPG Asia Mater., 5 (2013) 70-77.
[24] J.-J. Zhu, L.-L. Yu, J.-T. Zhao, 3D network mesoporous Beta -manganese dioxide: Template-free synthesis and supercapacitive performance, J. Power Sources 270 (2014) 411-417.
[25] W. Zhang, Z. Yang, X. Wang, Y. Zhang, X. Wen, S. Yang, Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye, Catal. Commun. 7 (2006) 408-412.
[26] W. Zhang, H. Wang, Z. Yang, F. Wang, Promotion of H2O2 decomposition activity over β–MnO2 nanorods catalysts, Colloid. Surface. A 304 (2007) 60-66.
[27] Z. Yang, Y. Zhang, W. Zhang, X. Wang, Y. Qian, X. Wen, S. Yang, Nanorods of manganese oxides: Synthesis, characterization and catalytic application, J Solid State Chem. 179 (2006) 679-684.
[28] Y. Dong, H. Yang, K. He, S. Song, A. Zhang, β-MnO2 nanowires: A novel ozonation catalyst for water treatment, Appl. Catal. B: Environ. 85 (2009) 155-161.
[29] T. Zhang, X. Zhang, X. Yan, J. Ng, Y. Wang, D. D. Sun, Removal Of bisphenol A via a hybrid process combining oxidation on β-MnO2 nanowires With microfiltration, Colloid. Surface. A 392 (2011) 198-204.
[30] X. Sun, C. Ma, Y. Wang, H. Li, Preparation and characterization of MnOOH and β-MnO2 whiskers, Inorg. Chem. Commun. 5 (2002) 747-750.
[31] D. Zheng, S. Sun, W. Fan, H. Yu, C. Fan, G. Cao, Z. Yin and Xi. Song, One-Step Preparation of Single-Crystallineβ-MnO2 Nanotubes, J. Phys. Chem. B 109 (2005) 16439-16443.
[32] G. Xi, Y. Peng, Y. Zhu, L. Xu, W. Zhang, W. Yu, Y. Qian, Preparation of β-MnO2 nanorods through a γ-MnOOH precursor route, Mater. Res. Bull. 39 (2004) 1641-1648.
[33] X. Zheng, T. Lin, G. Cheng, B. Lan, M. Sun, L. Yu, Hollow bipyramid β-MnO2: Pore size controllable synthesis and degradation activities, Adv. Powder Technol. 26 (2015) 622-625.
[34] X.-M. Liu, S.-Y. Fu, C.-J. Huang, Synthesis, characterization and magnetic properties of β-MnO2 nanorods, Powder Technol. 154 (2005) 120-124.
[35] J.-J. Feng, P.-P. Zhang, A.-J. Wang, Y. Zhang, W.-J. Dong, J.-R. Chen One-pot hydrothermal synthesis of uniform β–MnO2 nanorods for nitrite sensing, J. Colloid Interf. Sci. 359 (2011) 1-8.
[36] G. Xi, Y. Peng, Y. Zhu, L. Xu, W. Zhang, W. Yu, Y. Qian, Preparation of β-MnO2 nanorods through a γ-MnOOH precursor route, Mater. Res. Bull. 39 (2004) 1641-1648.
[37] Y. Wu, L. Guo, Z. Ma, Y. Gao, S. Xing, Structural and morphological evolution of mesoporous α-MnO2 and β-MnO2 materials synthesized via different routes through KMnO4/H2C2O4 reaction, Mater. Lett. 125 (2014) 158-161.
[38] M. Sun, B. Lan, L. Yun, F. Ye, W. Song, J. He, G. Diao, Y. Zheng, Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities, Mater. Lett. 86 (2012) 18-20.
[39] F. Li, J. Wua, Q. Qin, Z. Li, X. Huang, Facile synthesis of γ-MnOOH micro/nanorods and their conversion to β-MnO2, Mn3O4, J. Alloy. Compound. 492 (2010) 339-346.
[40] N. Sui, Y. Duan, X. Jiao, and D. Chen, Large-Scale Preparation and Catalytic Properties of One-Dimensional α/β-MnO2 Nanostructures, J. Phys. Chem. C 2009, 113, 8560-8565.
[41] C. Yu, G. Li, L. Wei, Q. Fan, Q. Shu, J. C. Yu, Fabrication, characterization of β-MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration, Catal. Today 224 (2014) 154-162.
[42] T. Gao, H. Fjellvåg, P. Norby, A comparison study on Raman scattering properties of β- and α-MnO2, Anal. Chim. Acta 648 (2009) 235-239.
[43] M. Sun, B. Lan, L. Yun, F. Ye, W. Song, J. He, G. Diao, Y. Zheng, Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities, Mater. Lett. 86 (2012) 18-20.
[44] T. Gao, H. Fjellvåg, P. Norby, Structural and morphological evolution of β-MnO2 nanorods during hydrothermal synthesis, Nanotechnology 20 (2009) 055610.
[45] S. Devaraj and N. Munichandraiah, Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties, J. Phys. Chem. 112 (2008) 4406-4417.
Cite This Article
  • APA Style

    Afef Bayoudh, Noureddine Etteyeb, Faouzi Sediri. (2016). Hydrothermal Synthesis, Physico-Chemical Characterization and Electrochemical Behavior of β-MnO2 Nanorods. American Journal of Nanosciences, 2(1), 1-7. https://doi.org/10.11648/j.ajn.20160201.11

    Copy | Download

    ACS Style

    Afef Bayoudh; Noureddine Etteyeb; Faouzi Sediri. Hydrothermal Synthesis, Physico-Chemical Characterization and Electrochemical Behavior of β-MnO2 Nanorods. Am. J. Nanosci. 2016, 2(1), 1-7. doi: 10.11648/j.ajn.20160201.11

    Copy | Download

    AMA Style

    Afef Bayoudh, Noureddine Etteyeb, Faouzi Sediri. Hydrothermal Synthesis, Physico-Chemical Characterization and Electrochemical Behavior of β-MnO2 Nanorods. Am J Nanosci. 2016;2(1):1-7. doi: 10.11648/j.ajn.20160201.11

    Copy | Download

  • @article{10.11648/j.ajn.20160201.11,
      author = {Afef Bayoudh and Noureddine Etteyeb and Faouzi Sediri},
      title = {Hydrothermal Synthesis, Physico-Chemical Characterization and Electrochemical Behavior of  β-MnO2 Nanorods},
      journal = {American Journal of Nanosciences},
      volume = {2},
      number = {1},
      pages = {1-7},
      doi = {10.11648/j.ajn.20160201.11},
      url = {https://doi.org/10.11648/j.ajn.20160201.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajn.20160201.11},
      abstract = {A simple hydrothermal method was developed for the synthesis ofpyrolosite β-MnO2 nanorods, using potassium permanganate (KMnO4), manganese sulfate (MnSO4.H2O) and oxalic acid (H2C2O4). The effects of the reaction time, the hydrothermal temperature and the amount of H2C2O4 on the structure and the morphology of the final products were studied. The β-MnO2 nanorods are up to several micrometers in length and about 37 nm in average diameter. The samples were analyzed through X-ray diffraction (DRX), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. Electrochemical measurements of thin film of β-MnO2 nanorods have revealed reversible redox behavior with charge-discharge cycling processes corresponding to reversible cations intercalation/deintercalation into the crystal lattice. This process is easier for the small Li+ to the larger Na+ one and to the largest K+ cation.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Hydrothermal Synthesis, Physico-Chemical Characterization and Electrochemical Behavior of  β-MnO2 Nanorods
    AU  - Afef Bayoudh
    AU  - Noureddine Etteyeb
    AU  - Faouzi Sediri
    Y1  - 2016/10/17
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajn.20160201.11
    DO  - 10.11648/j.ajn.20160201.11
    T2  - American Journal of Nanosciences
    JF  - American Journal of Nanosciences
    JO  - American Journal of Nanosciences
    SP  - 1
    EP  - 7
    PB  - Science Publishing Group
    SN  - 2575-4858
    UR  - https://doi.org/10.11648/j.ajn.20160201.11
    AB  - A simple hydrothermal method was developed for the synthesis ofpyrolosite β-MnO2 nanorods, using potassium permanganate (KMnO4), manganese sulfate (MnSO4.H2O) and oxalic acid (H2C2O4). The effects of the reaction time, the hydrothermal temperature and the amount of H2C2O4 on the structure and the morphology of the final products were studied. The β-MnO2 nanorods are up to several micrometers in length and about 37 nm in average diameter. The samples were analyzed through X-ray diffraction (DRX), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. Electrochemical measurements of thin film of β-MnO2 nanorods have revealed reversible redox behavior with charge-discharge cycling processes corresponding to reversible cations intercalation/deintercalation into the crystal lattice. This process is easier for the small Li+ to the larger Na+ one and to the largest K+ cation.
    VL  - 2
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Unité de recherche de Nanomatériaux et Environnement (UR15ES01), IPEIT, Université de Tunis, Tunisie, Tunisia

  • Unité de recherche de Nanomatériaux et Environnement (UR15ES01), IPEIT, Université de Tunis, Tunisie, Tunisia

  • Unité de recherche de Nanomatériaux et Environnement (UR15ES01), IPEIT, Université de Tunis, Tunisie, Tunisia; Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie, Tunisia

  • Sections