International Journal of Theoretical and Applied Mathematics
Volume 6, Issue 1, February 2020, Pages: 1-13
Received: Oct. 21, 2019;
Accepted: Nov. 12, 2019;
Published: Dec. 30, 2019
Views 740 Downloads 351
Author
Mehrdad Nasernejad, Department of Mathematics, Khayyam University, Mashhad, Iran
Mehrdad Nasernejad,
Associated Primes of Powers of Monomial Ideals: A Survey, International Journal of Theoretical and Applied Mathematics.
Vol. 6, No. 1,
2020, pp. 1-13.
doi: 10.11648/j.ijtam.20200601.11
[1]
Brodmann M. Asymptotic stability of Ass(M=InM). Proc. Amer. Math. Soc. 1979; 74:16-18. doi: 10.2307/2042097.
[2]
Hoa L. T. Stability of associated primes of monomial ideals. Vietnam J. Math. 2006; 34: 473-487.
[3]
Khashyarmanesh K, Nasernejad M. On the stable set of associated prime ideals of monomial ideals and squarefree monomial ideals. Comm. Algebra. 2014; 42: 3753-3759. doi: 10.1080/00927872.2013.793696.
[4]
Khashyarmanesh K, Nasernejad M. Some results on the associated primes of monomial ideals. Southeast Asian Bull. Math. 2015; 39: 439-451.
[5]
McAdam S. Asymptotic Prime Divisors. Lecture Notes in Mathematics. 103. New York: Springer-Verlag; 1983. 120 p.
[6]
Herzog J, Hibi T. The depth of powers of an ideal. J. Algebra 2005; 291: 534-550. doi: 10.1016/j.jalgebra.2005.04.007.
[7]
Mart_inez-Bernal J, Morey S, Villarreal R. H. Associated primes of powers of edge ideals. J. Collect. Math. 2012; 63: 361-374. doi: 10.1007/s13348-011-0045-9.
[8]
Morey S, Villarreal R. H. Edge ideals: Algebraic and combinatorial properties, Progress in commutative Algebra. 2012; 1: 85-126.
[9]
Kaiser T, Stehl_ik M, _ Skrekovski R. Replication in critical graphs and the persistence of monomial ideals. J. Comb. Theory Ser. A. 2014; 123: 239-251. doi: 10.1016/j.jcta.2013.12.005.
[10]
Ratliff L. J. Jr. On prime divisors of In, n large. Michigan Math. J. 1976; 23: 337-352. doi: 10.1307/mmj/1029001769.
[11]
Reyes E, Toledo J. On the strong persistence property for monomial ideals. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 2017; 60(108): 293-305.
[12]
Herzog J, Rauf A, Vladoiu M. The stable set of associated prime ideals of a polymatroidal ideal. J. Algebraic Combin. 2013; 37: 289-312. doi: 10.1007/s10801-012-0367-z.
[13]
Francisco C. A, H`a H. T, Van Tuyl A. Colorings of hypergraphs, perfect graphs and associated primes of powers of monomial ideals. J. Algebra. 2011; 331: 224-242. doi: 10.1016/j.jalgebra.2010.10.025.
[14]
Simis A, Vasconcelos W, Villarreal R. H. On the ideal theory of graphs. J. Algebra. 1994; 167: 389-416. doi: 10.1006/jabr.1994.1192.
[15]
Gitler I, Reyes E, Villarreal R. H. Blowup algebras of ideals of vertex covers of bipartite graphs. Contemp. Math. 2005; 376: 273-279.
[16]
Hungerford T. W. Algebra,. Graduate Texts in Mathematics. 73. New York: Springer-Verlag, 1974. 504p.
[17]
Nasernejad M. A new proof of the persistence property for ideals in Dedekind rings and Pr¨ufer domains. J. Algebr. Syst. 2013; 1: 91-100. doi: 10.22044/jas.2014.229.
[18]
Nasernejad M. Persistence property for associated primes of a family of ideals. Southeast Asian Bull. Math. 2016; 40: 571-575.
[19]
Villarreal R. H. Cohen-Macaulay graphs. Manuscripta Math. 1990; 66: 277-293. doi: 10.1007/BF02568497.
[20]
Conca A, De Negri E. M-sequences, graph ideals, and ladder ideals of linear type. J. Algebra. 1999; 211: 599-624. doi:10.1006/jabr.1998.7740.
[21]
Nasernejad M. Asymptotic behaviour of assicated primes of monomial ideals with combinatorial applications. J. Algebra Relat. Topics. 2014; 2: 15-25.
[22]
Nasernejad M, Khashyarmanesh K. On the Alexander dual of the path ideals of rooted and unrooted trees. Comm. Algebra. 2017; 45: 1853-1864. doi: 10.1080/00927872.2016.1226855.
[23]
Bhat A, Biermann J, Van Tuyl A. Generalized cover ideals and the persistence property. J. Pure Appl. Algebra. 2014; 218: 1683-1695. doi: 10.1016/j.jpaa.2014.01.007.
[24]
Bayati S, Herzog J. Expansions of monomial ideals and multigraded modules. Rocky Mountain J. Math. 2014; 44: 1781-1804. doi: 10.1216/RMJ-2014-44-6-1781.
[25]
Nasernejad M. Persistence property for some classes of monomial ideals of a polynomial ring. J. Algebra Appl. 2017; 16: 1750105 (17 pages). doi: 10.1142/S0219498817501055.
[26]
Nasernejad M, Rajaee S. Detecting the maximalassociated prime ideal of monomial ideals. Bol. Soc. Mat. Mex. doi: 10.1007/s40590-018-0208-8.
[27]
Rajaee S, Nasernejad M, Al-Ayyoub I. Superficial ideals for monomial ideals. J. Algebra Appl. 2018; 17: 1850102 (28 pages). doi: 10.1142/S0219498818501025.
[28]
Nasernejad M, Khashyarmanesh K, Al-Ayyoub I. Associated primes of powers of cover ideals under graph operations. Comm. Algebra. doi: 10.1080/00927872.2018.1527920.
[29]
Sayedsadeghi M, Nasernejad M. Normally torsionfreeness of monomial ideals under monomial operators. Comm. Algebra. doi: 10.1080/00927872.2018.1469029.
[30]
Chen W. C, Lu H. I, and Yeh Y. N. Operations of Interlaced Trees and Graceful Trees. Southeast Asian Bull. Math. 1997; 21: 337-348.
[31]
Khashyarmanesh K, Nasernejad M. A note on the Alexander dual of path ideals of rooted trees. Comm. Algebra. 2018; 46: 283-289. doi: 10.1080/00927872.2017.1324867.
[32]
Herzog J, Qureshi A. A. Persistence and stability properties of powers of ideals. J. Pure Appl. Algebra. 2015; 219: 530-542. doi: 10.1016/j.jpaa.2014.05.011.
[33]
H`a H. T, Morey S. Embedded associated primes of powers of square-free monomial ideals. J. Pure Appl. Algebra. 2010; 214: 301-308. doi: 10.1016/j.jpaa.2009.05.002.