Electrical Characterization of a Photovoltaic Module Through Artificial Neural Network: A Review
International Journal of Electrical Components and Energy Conversion
Volume 3, Issue 1, February 2017, Pages: 14-20
Received: Feb. 11, 2017; Accepted: Mar. 9, 2017; Published: Apr. 18, 2017
Views 1945      Downloads 152
Author
Rashmi Galphade, Department of Physics, BNN (Arts, Science and Commerce) College, Dhamankar Naka, Bhiwandi, India
Article Tools
Follow on us
Abstract
The aim of this paper is to present a review of I-V characteristics of photovoltaic module using artificial neural network (ANN). The ANN approach has found to be the efficient tool over complex non-linear mathematical equations and complicated models for estimation of output power and energy of PV modules.
Keywords
Photovoltaic Module, ANN, Modeling, Simulation, Electrical Characteristics
To cite this article
Rashmi Galphade, Electrical Characterization of a Photovoltaic Module Through Artificial Neural Network: A Review, International Journal of Electrical Components and Energy Conversion. Vol. 3, No. 1, 2017, pp. 14-20. doi: 10.11648/j.ijecec.20170301.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Lopes L. A. C., Lienhardt A. M., “A simplified nonlinear power source for simulating PV panels.” Power Electronics Specialist, PESC’03. IEEE 34th Annual Conference, Vol. 4, pp. 1729-1734, 15-19 June 2003.
[2]
M. Hadjab, S. Berrah and H. Abid, “Neural Network for modeling solar panel.” Int. j. of Energy, Vol. 6(1), 2012.
[3]
L. Sandrolini, M. Artioli and U. Reggiani, “Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis,” Applied Energy, vol. 87(2), pp. 442-451, 2010.
[4]
T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata and K. Ebihara, “Estimation of equivalent circuit parameters of pv module and its application to optimal operation of pv system,” Solar energy materials and solar cells,vol. 67(1), pp. 389-395, 2001.
[5]
V. Lo Brano, A. Orioli, g. Ciulla and A. Di Gangi, “An improved five-parameter model for photovoltaic modules,” Solar Energy Materials and Solar Cells, vol. 94(8), pp. 1358-1370, 2010.
[6]
González-Longatt FM. Model of Photovoltaic Module in MatlabTM. In Proc. 2DO CongresoIberoamericano De Estudiantes De IngenieríaEléctrica, Electrónicaycomputación (II CIBELEC 2005)Venezuela, pp. 1-5, 2006.
[7]
Pater M. R., Wind and solar Power System, Design, Analysis and Operations, Boca Raton, FL: CRC Press, 2012.
[8]
R. K. Mishra, G. N. Tiwari, “Energy and energy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode”,Solar energy, vol. 90, pp. 58-67, 2013.
[9]
Tiwari G. N. and Dubey S., Fundamental of photovoltaic modules and their applications. United Kingdom: RSC Publishing: 2010.
[10]
M. Beale, M. T. Hagan and H. B. Demuth. Neural Network Toolbox. The Mathworks, pp. 5-25, 2013.
[11]
M. Sungawara., “Numerical solution of the Schröndinger equation by neural network and genetic algorithm”, Computer Physics Communications, vol. 140, pp.366-380, 2001.
[12]
A. J. Greaves, J. Gasteiger, “The use of self- organizing neural networks in dye design”, Dyes and Pigments, vol. 49, pp.51-63, 2001.
[13]
M. Vasudevan, A. K. Bhaduri, Baldev Raj, K. Prasad Rao, “Delta ferrite prediction in stainless steel welds using neural network analysis and comparison with other prediction methods”, J. of Materials Processing Technology, 142, pp.20-28, 2003.
[14]
S. A. Kalogirou & M. Bojic, “Artificial neural networks for the prediction of the energy consumption of a passive solar building.”Energy, vol.25, pp.479 - 491, 2000.
[15]
S. A. Kalogirou, “Artificial neural-networks for energy systems.”Applied Energy, vol. 67, pp. 17 - 35, 2000.
[16]
S. A. Kalogirou “Artificial neural networks in renewable energy systems applications: a review.” Renewable and Sustainable Energy Reviews, vol. 5, pp. 307-401.
[17]
Schalkoff R. J., Artificial Neural Networks (TATA McGRAW-HILL, Singapore) Chapter 6, pp. 146- 151, 1997.
[18]
Hagan M. T., Demuth H. B., Beale M., NEURAL NETWORK DESIGN, THOMSON LEARNING, International Student Edition, Vikas Publishing House, chapter 19 pp. 3, 2003.
[19]
F. Bonanno, G. Capizzi, C. Napoli, G. Graditi, G. Marco Tina, “A radial basis function neural network approach for the electrical characteristics estimation of a photovoltaic module.” Applied Energy, vol. 97, pp. 956-961, 2012.
[20]
L. S. Sindhura, K. Chaudhary, “Artificial Neural Network Implementation for Maximum Power Point Tracking of Optimized Solar Panel.” Int. J. of Computer Applications, vol. 78(10), pp. 1-6, 2013.
[21]
M. U. Olanipekun, J. L. Munda, G. Chen Hens-Wien, A. S. Kumar, “Estimation of maximum power generated from CIGS photovoltaic modules under non-uniform conditions.”Int. J. of Smart Grid and Clean Energy, vol. 3(3), 2014.
[22]
M. T. Makhloufi, M. S. Khireddine, Y. Abdessemed, A. Boutarfa, “Tracking Power Photovoltaic System using Artificial Neural Network Control Strategy”, Int. J. Intelligent Systems and Applications, vol. 12, pp.17-26, 2014.
[23]
H. Rezk and El-Sayed Hasaneen, “A new matlab/simulink model of triple junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems”, Article in press, AinShams Eng J, 2015.
[24]
B. Garcia-Domingo, M. Pilliougine, D. Elizondo, J. Agnilera, “CPV module electric characteristics by artificial neural networks”, Renewable energy, vol. 78, pp. 173-181, june 2015.
[25]
İlhanCeylan, OkanErkaymaz, EnginGedik, Ali EtemGürel, “The prediction of photovoltaic module temperature with artificial neural networks.”,Case studies in Thermal Engineering, vol. 3, pp. 11-20, 2014.
[26]
C. B. Salah, M. Ouali, “Comparision of fuzzy logic and neural network in maximum point tracker for PV systems”,Electric Power Systems Research, vol. 81, pp. 43-50, 2011.
[27]
L.Thiaw, G. Sow, S. Fall, “Application of Neural Network Technique in Renewable Energy Systems, paper presented in First International Conference on Systems Informatics”, Modelling and Simulation, pp. 6-11, 2014.
[28]
H. Parmar, “Artificial Neural Network Based Modelling of Photovoltaic System”, Int. j. of Latest Trends in Engineering and Technology, vol. 5 (1), pp. 50-59.
[29]
H. Mekki., A. Mellit., H. Salhi, K. Belhout., “Modeling and Simulation of Photovolaic Panel based on Artificial Neural Networks and VHDL-Language”, paper presented in 4th International Conference on Computer Integrated Manufacturing CIP’, pp. 1-5, 03-04 November 2007.
[30]
K. J. Singh, K. L. Rita Kho, S. J. Singh, Y. Chandrika Devi, N. Basanta Singh, S. K. Sarkar, “ARTIFICIAL NEURAL NETWORK APPROACH FOR MORE ACCURATE SOLAR CELL ELECTRICAL CIRCUIT MODEL”, Int. J. on Computional Sciences & Applications, vol. 4(3), pp. 101-116, june 2014.
[31]
F. Dkhichi and B. Oukarfi, “Determination of Solar Cell Parameters using Neural Network Trained by Steepest Descent Algorithm”,Int. J. of Advanced Research in Computer Science and Software Engineering, vol. 4(8), pp. 121-125, August 2014.
[32]
Adel El Shahat, “PV CELL MODULE MODELING AND ANN SIMULATION FOR SMART GRID APPLICATIONS”, Journal of Theoretical and Applied information Technology, vol. 16(1), pp. 9-20, 2010.
[33]
M. S. AïtCheikh, M. Haddadi, A. Zerguerras, “Design of a neural network control scheme for the maximum power point tracking (MPPT)”, Revue des Energies Renouvelables, vol. 10(1), pp. 109-118, 2007.
[34]
J. Nagarjuna Reddy, B. M. Manjunatha, M. Matam, “Improving efficiency of Photovoltaic System with Neural Network Based MPPT Connected To DC Shunt Motor”, Int. J. of Modern Engineering Research, vol. 3(5), pp. 2901-2907, Sept-Oct 2013.
[35]
R. Ramaprabha, S. P. Chitra, “Comparative Analysis of Maximum Power Point Tracking Controllers under Partial Shaded Conditions in a Photovoltaic System”, The Journal of Engineering Research, vol. 12(1), pp. 15-31, 2015.
[36]
V. Lo Brano, G. Ciulla, M. Di Falco, “Artificial Neural Networks to Predict the Power Output of a PV Pane”, Int. j. of photoenergy, pp. 1-13, January 2014.
[37]
E. Velilla, J. Valencia, F. Jaramillo, “Performance evaluation of two solar photovoltaic technologies under atmospheric exposure using artificial neural network models”, Solar Energy, vol. 107, pp. 260-271, 2014.
[38]
J. Zeng, W. Quia, “Short-Term Solar Power Prediction Using an RBF Neural Network”, IEEE Power and Energy Society General Meeting, pp. 1-8, 2011.
[39]
F. Almonacid, C. Rus, L. Hontoria, F. J. Muñoz, “Characterisation of PV CIS module by artificial neural networks, A comparative study with other methods”, Renewable energy, 35, pp. 973-980, 2010
[40]
A. Mellit, S. Sağlam, S. A. Kalogirou, “Artificial neural network-based model for estimating the produced power of a photovoltaic module”, Renewable energy, vo.l..60, pp.. 71-78, 2013.
[41]
S. Leva, A. Dolara, F. Grimaccia, M. Mussetta, E. Ogliari, “Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power”, Mathematics and Computers in Simulation, in press, pp. 1-23, 2015.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186