| Peer-Reviewed

The Amphibolous Role of miR-203 in Gastrointestinal and Urogenital Cancers

Received: 30 October 2017    Accepted: 16 November 2017    Published: 3 January 2018
Views:       Downloads:
Abstract

miR-203, as a member of the miRNAs family, play a major role in control of gene expression during normal development and are disrupted in the initiation and progression of specific diseases. It was worth nothing that a growing body of evidence indicated an abnormal expression of miR-203 in several human leading cancers including gastrointestinal and urogenital cancers. The cytosine-phosphoguanine (CpG)-island methylation was one of the most significant factors which controlled the expression of miR-203. Furthermore, miR-203 participated in these cancers via targeting its downstream genes. However, the precise regulatory mechanisms underlying miR-203 association with these cancers are still not fully understood. The aim of this review is to sum up the collective knowledge of miR-203 in gastrointestinal and urogenital cancers.

Published in International Journal of Animal Science and Technology (Volume 1, Issue 1)
DOI 10.11648/j.ijast.20170101.12
Page(s) 5-14
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

miR-203, Gastrointestinal Cancers, Urogenital Cancers, Methylation, Targeting

References
[1] J. A. Vidigal, A. Ventura, The biological functions of miRNAs: lessons from in vivo studies, Trends Cell Biol 25 (3) (2015) 137-47.
[2] N. C. Lau, L. P. Lim, E. G. Weinstein, D. P. Bartel, An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans, Science 294 (5543) (2001) 858-62.
[3] W. Filipowicz, S. N. Bhattacharyya, N. Sonenberg, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?, Nature reviews. Genetics 9 (2) (2008) 102-14.
[4] Z. H. Wu, L. M. Pfeffer, MicroRNA regulation of F-box proteins and its role in cancer, Semin Cancer Biol (2015).
[5] B. P. Towler, C. I. Jones, S. F. Newbury, Mechanisms of regulation of mature miRNAs, Biochem Soc Trans 43 (6) (2015) 1208-14.
[6] A. Kozomara, S. Griffiths-Jones, miRBase: integrating microRNA annotation and deep-sequencing data, Nucleic acids research 39 (Database issue) (2011) D152-7.
[7] J. Masliah-Planchon, S. Garinet, E. Pasmant, RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action, Oncotarget (2015).
[8] Y. He, J. Lin, D. Kong, M. Huang, C. Xu, T. K. Kim, A. Etheridge, Y. Luo, Y. Ding, K. Wang, Current State of Circulating MicroRNAs as Cancer Biomarkers, Clin Chem 61 (9) (2015) 1138-55.
[9] G. Bertoli, C. Cava, I. Castiglioni, MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer, Theranostics 5 (10) (2015) 1122-43.
[10] E. S. Lianidou, Gene expression profiling and DNA methylation analyses of CTCs, Mol Oncol 10 (3) (2016) 431-42.
[11] S. Noguchi, T. Mori, T. Nakagawa, K. Itamoto, T. Haraguchi, T. Mizuno, DNA methylation contributes toward silencing of antioncogenic microRNA-203 in human and canine melanoma cells, Melanoma Res 25 (5) (2015) 390-8.
[12] R. Yi, M. N. Poy, M. Stoffel, E. Fuchs, A skin microRNA promotes differentiation by repressing 'stemness', Nature 452 (7184) (2008) 225-9.
[13] W. Wei, L. Wanjun, S. Hui, C. Dongyue, Y. Xinjun, Z. Jisheng, miR-203 inhibits proliferation of HCC cells by targeting survivin, Cell biochemistry and function 31 (1) (2013) 82-5.
[14] Z. Zhang, B. Zhang, W. Li, L. Fu, Z. Zhu, J. T. Dong, Epigenetic Silencing of miR-203 Upregulates SNAI2 and Contributes to the Invasiveness of Malignant Breast Cancer Cells, Genes Cancer 2 (8) (2011) 782-91.
[15] M. V. Iorio, R. Visone, G. Di Leva, V. Donati, F. Petrocca, P. Casalini, C. Taccioli, S. Volinia, C. G. Liu, H. Alder, G. A. Calin, S. Menard, C. M. Croce, MicroRNA signatures in human ovarian cancer, Cancer Res 67 (18) (2007) 8699-707.
[16] D. D. Taylor, C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer, Gynecol Oncol 110 (1) (2008) 13-21.
[17] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics, CA: a cancer journal for clinicians 61 (2) (2011) 69-90.
[18] Y. Ladeiro, G. Couchy, C. Balabaud, P. Bioulac-Sage, L. Pelletier, S. Rebouissou, J. Zucman-Rossi, MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations, Hepatology 47 (6) (2008) 1955-63.
[19] M. Furuta, K. I. Kozaki, S. Tanaka, S. Arii, I. Imoto, J. Inazawa, miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma, Carcinogenesis 31 (5) (2010) 766-76.
[20] H. Y. Chen, Z. B. Han, J. W. Fan, J. Xia, J. Y. Wu, G. Q. Qiu, H. M. Tang, Z. H. Peng, miR-203 expression predicts outcome after liver transplantation for hepatocellular carcinoma in cirrhotic liver, Medical oncology 29 (3) (2012) 1859-65.
[21] Y. Liu, F. Ren, M. Rong, Y. Luo, Y. Dang, G. Chen, Association between underexpression of microrna-203 and clinicopathological significance in hepatocellular carcinoma tissues, Cancer Cell Int 15 (2015) 62.
[22] D. Wan, S. Shen, S. Fu, C. Shen, J. Wu, S. Wang, W. Xie, B. Chen, L. A, Y. Guo, D. Zheng, Q. Zhi, B. Peng, miR-203 suppresses the proliferation and metastasis of hepatocellular carcinoma by targeting oncogene ADAM9 and oncogenic long non-coding RNA HULC, Anticancer Agents Med Chem (2015).
[23] F. Yang, L. Z. Lv, Q. C. Cai, Y. Jiang, Potential roles of EZH2, Bmi-1 and miR-203 in cell proliferation and invasion in hepatocellular carcinoma cell line Hep3B, World J Gastroenterol 21 (47) (2015) 13268-76.
[24] D. Liu, J. Wu, M. Liu, H. Yin, J. He, B. Zhang, Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial-mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells, Biochem Biophys Res Commun 464 (4) (2015) 1215-21.
[25] P. Bertuccio, L. Chatenoud, F. Levi, D. Praud, J. Ferlay, E. Negri, M. Malvezzi, C. La Vecchia, Recent patterns in gastric cancer: a global overview, International journal of cancer. Journal international du cancer 125 (3) (2009) 666-73.
[26] Y. Chiang, Y. Song, Z. Wang, Y. Chen, Z. Yue, H. Xu, C. Xing, Z. Liu, Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers, Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 15 (1) (2011) 63-70.
[27] H. H. Zhang, G. L. Gu, X. Y. Zhang, F. Z. Li, L. Ding, Q. Fan, R. Wu, W. Shi, X. Y. Wang, L. Chen, X. M. Wei, X. Y. Yuan, Primary analysis and screening of microRNAs in gastric cancer side population cells, World journal of gastroenterology: WJG 21 (12) (2015) 3519-26.
[28] V. J. Craig, S. B. Cogliatti, H. Rehrauer, T. Wundisch, A. Muller, Epigenetic silencing of microRNA-203 dysregulates ABL1 expression and drives Helicobacter-associated gastric lymphomagenesis, Cancer research 71 (10) (2011) 3616-24.
[29] Y. Du, Z. Liu, L. Gu, J. Zhou, B. D. Zhu, J. Ji, D. Deng, Characterization of human gastric carcinoma-related methylation of 9 miR CpG islands and repression of their expressions in vitro and in vivo, BMC Cancer 12 (2012) 249.
[30] X. Zhou, G. Xu, C. Yin, W. Jin, G. Zhang, Down-regulation of miR-203 induced by Helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting CASK, Oncotarget 5 (22) (2014) 11631-40.
[31] Y. Shi, Y. J. Tan, D. Z. Zeng, F. Qian, P. W. Yu, miR-203 suppression in gastric carcinoma promotes Slug-mediated cancer metastasis, Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine (2015).
[32] H. Imaoka, Y. Toiyama, M. Okigami, H. Yasuda, S. Saigusa, M. Ohi, K. Tanaka, Y. Inoue, Y. Mohri, M. Kusunoki, Circulating microRNA-203 predicts metastases, early recurrence, and poor prognosis in human gastric cancer, Gastric Cancer (2015).
[33] E. Stanitz, K. Juhasz, C. Toth, K. Gombos, P. G. Natali, I. Ember, Evaluation of MicroRNA expression pattern of gastric adenocarcinoma associated with socioeconomic, environmental and lifestyle factors in northwestern Hungary, Anticancer research 33 (8) (2013) 3195-200.
[34] J. L. Cameron, T. S. Riall, J. Coleman, K. A. Belcher, One thousand consecutive pancreaticoduodenectomies, Ann Surg 244 (1) (2006) 10-5.
[35] T. Greither, L. F. Grochola, A. Udelnow, C. Lautenschlager, P. Wurl, H. Taubert, Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival, International journal of cancer. Journal international du cancer 126 (1) (2010) 73-80.
[36] S. Yabushita, K. Fukamachi, H. Tanaka, K. Sumida, Y. Deguchi, T. Sukata, S. Kawamura, S. Uwagawa, M. Suzui, H. Tsuda, Circulating microRNAs in serum of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas, Pancreas 41 (7) (2012) 1013-8.
[37] N. Ikenaga, K. Ohuchida, K. Mizumoto, J. Yu, T. Kayashima, H. Sakai, H. Fujita, K. Nakata, M. Tanaka, MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma, Annals of surgical oncology 17 (12) (2010) 3120-8.
[38] S. Ali, H. Dubaybo, R. E. Brand, F. H. Sarkar, Differential Expression of MicroRNAs in Tissues and Plasma Co-exists as a Biomarker for Pancreatic Cancer, J Cancer Sci Ther 7 (11) (2015) 336-346.
[39] J. Yu, A. Li, S. M. Hong, R. H. Hruban, M. Goggins, MicroRNA alterations of pancreatic intraepithelial neoplasias, Clinical cancer research: an official journal of the American Association for Cancer Research 18 (4) (2012) 981-92.
[40] Z. G. Ren, S. X. Dong, P. Han, J. Qi, miR-203 promotes proliferation, migration and invasion by degrading SIK1 in pancreatic cancer, Oncol Rep 35 (3) (2016) 1365-74.
[41] L. Miao, X. Xiong, Y. Lin, Y. Cheng, J. Lu, J. Zhang, N. Cheng, miR-203 inhibits tumor cell migration and invasion via caveolin-1 in pancreatic cancer cells, Oncol Lett 7 (3) (2014) 658-662.
[42] M. Zhou, J. Chen, L. Zhou, W. Chen, G. Ding, L. Cao, Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203, Cellular immunology 292 (1-2) (2014) 65-9.
[43] S. Meidhof, S. Brabletz, W. Lehmann, B. T. Preca, K. Mock, M. Ruh, J. Schuler, M. Berthold, A. Weber, U. Burk, M. Lubbert, M. Puhr, Z. Culig, U. Wellner, T. Keck, P. Bronsert, S. Kusters, U. T. Hopt, M. P. Stemmler, T. Brabletz, ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat, EMBO Mol Med 7 (6) (2015) 831-47.
[44] A. E. Frampton, J. Krell, N. B. Jamieson, T. M. Gall, E. Giovannetti, N. Funel, M. Mato Prado, D. Krell, N. A. Habib, L. Castellano, L. R. Jiao, J. Stebbing, microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis, European journal of cancer 51 (11) (2015) 1389-404.
[45] P. C. Enzinger, R. J. Mayer, Esophageal cancer, The New England journal of medicine 349 (23) (2003) 2241-52.
[46] A. Feber, L. Xi, J. D. Luketich, A. Pennathur, R. J. Landreneau, M. Wu, S. J. Swanson, T. E. Godfrey, V. R. Litle, MicroRNA expression profiles of esophageal cancer, The Journal of thoracic and cardiovascular surgery 135 (2) (2008) 255-60; discussion 260.
[47] L. Zhu, W. Yan, J. Rodriguez-Canales, A. M. Rosenberg, N. Hu, A. M. Goldstein, P. R. Taylor, H. S. Erickson, M. R. Emmert-Buck, M. A. Tangrea, MicroRNA analysis of microdissected normal squamous esophageal epithelium and tumor cells, American journal of cancer research 1 (5) (2011) 574-584.
[48] R. Saad, Z. Chen, S. Zhu, P. Jia, Z. Zhao, M. K. Washington, A. Belkhiri, W. El-Rifai, Deciphering the unique microRNA signature in human esophageal adenocarcinoma, PloS one 8 (5) (2013) e64463.
[49] H. B. Wang, Z. B. Jiang, M. Li, Research on the Typical miRNA and Target Genes in Squamous Cell Carcinoma and Adenocarcinoma of Esophagus Cancer with DNA Microarray, Pathology oncology research: POR (2014).
[50] Y. Yuan, Z. Y. Zeng, X. H. Liu, D. J. Gong, J. Tao, H. Z. Cheng, S. D. Huang, MicroRNA-203 inhibits cell proliferation by repressing DeltaNp63 expression in human esophageal squamous cell carcinoma, BMC cancer 11 (2011) 57.
[51] M. Cao, X. Deng, S. Su, F. Zhang, X. Xiao, Q. Hu, Y. Fu, B. B. Yang, Y. Wu, W. Sheng, Y. Zeng, Protamine sulfate-nanodiamond hybrid nanoparticles as a vector for MiR-203 restoration in esophageal carcinoma cells, Nanoscale 5 (24) (2013) 12120-5.
[52] F. Zhang, Z. Yang, M. Cao, Y. Xu, J. Li, X. Chen, Z. Gao, J. Xin, S. Zhou, Z. Zhou, Y. Yang, W. Sheng, Y. Zeng, MiR-203 suppresses tumor growth and invasion and down-regulates MiR-21 expression through repressing Ran in esophageal cancer, Cancer letters 342 (1) (2014) 121-9.
[53] N. Takeshita, M. Mori, M. Kano, I. Hoshino, Y. Akutsu, N. Hanari, Y. Yoneyama, N. Ikeda, Y. Isozaki, T. Maruyama, N. Akanuma, Y. Miyazawa, H. Matsubara, miR-203 inhibits the migration and invasion of esophageal squamous cell carcinoma by regulating LASP1, International journal of oncology 41 (5) (2012) 1653-61.
[54] X. Yu, X. Jiang, H. Li, L. Guo, W. Jiang, S. H. Lu, miR-203 inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1, Stem Cells Dev 23 (6) (2014) 576-85.
[55] T. Okumura, Y. Shimada, M. Moriyama, Y. Takei, T. Omura, S. Sekine, T. Nagata, K. Shimizu, K. Tsukada, MicroRNA-203 inhibits the progression of esophageal squamous cell carcinoma with restored epithelial tissue architecture in vivo, International journal of oncology 44 (6) (2014) 1923-32.
[56] K. Zhang, L. Dai, B. Zhang, X. Xu, J. Shi, L. Fu, X. Chen, J. Li, Y. Bai, miR-203 is a direct transcriptional target of E2F1 and causes G1 arrest in esophageal cancer cells, Journal of cellular physiology 230 (4) (2015) 903-10.
[57] J. Li, F. Shan, G. Xiong, X. Chen, X. Guan, J. M. Wang, W. L. Wang, X. Xu, Y. Bai, EGF-induced C/EBPbeta participates in EMT by decreasing the expression of miR-203 in esophageal squamous cell carcinoma cells, Journal of cell science 127 (Pt 17) (2014) 3735-44.
[58] J. Coget, F. Borrini, S. Susman, J. C. Sabourin, Colorectal carcinomas in 2013: the search for powerful prognostic markers is still on the go!, Cancer Biomark 14 (2-3) (2014) 145-50.
[59] A. G. Xu, Z. J. Yu, B. Jiang, X. Y. Wang, X. H. Zhong, J. H. Liu, Q. Y. Lou, A. H. Gan, Colorectal cancer in Guangdong Province of China: a demographic and anatomic survey, World J Gastroenterol 16 (8) (2010) 960-5.
[60] L. Kelland, The resurgence of platinum-based cancer chemotherapy, Nat Rev Cancer 7 (8) (2007) 573-84.
[61] S. Y. Ju, S. H. Chiou, Y. Su, Maintenance of the stemness in CD44 (+) HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression, Stem Cell Res 12 (1) (2014) 86-100.
[62] J. Li, Y. Chen, J. Zhao, F. Kong, Y. Zhang, miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression, Cancer Lett 304 (1) (2011) 52-9.
[63] T. Li, F. Gao, X. P. Zhang, miR-203 enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer, Oncol Rep 33 (2) (2015) 607-14.
[64] Y. Zhou, G. Wan, R. Spizzo, C. Ivan, R. Mathur, X. Hu, X. Ye, J. Lu, F. Fan, L. Xia, G. A. Calin, L. M. Ellis, X. Lu, miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase, Mol Oncol 8 (1) (2014) 83-92.
[65] V. Abella, M. Valladares, T. Rodriguez, M. Haz, M. Blanco, N. Tarrio, P. Iglesias, L. A. Aparicio, A. Figueroa, miR-203 regulates cell proliferation through its influence on Hakai expression, PLoS One 7 (12) (2012) e52568.
[66] Z. Li, L. Du, Z. Dong, Y. Yang, X. Zhang, L. Wang, J. Li, G. Zheng, A. Qu, C. Wang, MiR-203 suppresses ZNF217 upregulation in colorectal cancer and its oncogenicity, PLoS One 10 (1) (2015) e0116170.
[67] R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2015, CA: a cancer journal for clinicians 65 (1) (2015) 5-29.
[68] S. Saini, S. Majid, S. Yamamura, L. Tabatabai, S. O. Suh, V. Shahryari, Y. Chen, G. Deng, Y. Tanaka, R. Dahiya, Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis, Clinical cancer research: an official journal of the American Association for Cancer Research 17 (16) (2011) 5287-98.
[69] J. Xiang, C. Bian, H. Wang, S. Huang, D. Wu, MiR-203 down-regulates Rap1A and suppresses cell proliferation, adhesion and invasion in prostate cancer, J Exp Clin Cancer Res 34 (2015) 8.
[70] A. Hailer, T. G. Grunewald, M. Orth, C. Reiss, B. Kneitz, M. Spahn, E. Butt, Loss of tumor suppressor mir-203 mediates overexpression of LIM and SH3 Protein 1 (LASP1) in high-risk prostate cancer thereby increasing cell proliferation and migration, Oncotarget 5 (12) (2014) 4144-4153.
[71] M. K. Siu, W. Abou-Kheir, J. J. Yin, Y. S. Chang, B. Barrett, F. Suau, O. Casey, W. Y. Chen, L. Fang, P. Hynes, Y. Y. Hsieh, Y. N. Liu, J. Huang, K. Kelly, Loss of EGFR signaling regulated miR-203 promotes prostate cancer bone metastasis and tyrosine kinase inhibitors resistance, Oncotarget 5 (11) (2014) 3770-84.
[72] K. Boll, K. Reiche, K. Kasack, N. Morbt, A. K. Kretzschmar, J. M. Tomm, G. Verhaegh, J. Schalken, M. von Bergen, F. Horn, J. Hackermuller, MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma, Oncogene 32 (3) (2013) 277-85.
[73] Y. Qu, W. C. Li, M. R. Hellem, K. Rostad, M. Popa, E. McCormack, A. M. Oyan, K. H. Kalland, X. S. Ke, MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells, International journal of cancer. Journal international du cancer 133 (3) (2013) 544-55.
[74] Z. Huang, L. Zhang, X. Yi, X. Yu, Diagnostic and prognostic values of tissue hsa-miR-30c and hsa-miR-203 in prostate carcinoma, Tumour Biol (2015).
[75] E. Guzel, O. F. Karatas, A. Semercioz, S. Ekici, S. Aykan, S. Yentur, C. J. Creighton, M. Ittmann, M. Ozen, Identification of microRNAs differentially expressed in prostatic secretions of patients with prostate cancer, International journal of cancer. Journal international du cancer 136 (4) (2015) 875-9.
[76] D. D'Alo, F. Stracci, T. Cassetti, M. Scheibel, C. Pascucci, F. La Rosa, Recent trends in incidence, mortality and survival after cancer of the female breast and reproductive organs. Umbria, Italy: 1978-2005, Eur J Gynaecol Oncol 31 (2) (2010) 174-80.
[77] J. Bo, G. Yang, K. Huo, H. Jiang, L. Zhang, D. Liu, Y. Huang, microRNA-203 suppresses bladder cancer development by repressing bcl-w expression, The FEBS journal 278 (5) (2011) 786-92.
[78] M. Garofalo, C. Quintavalle, C. Zanca, A. De Rienzo, G. Romano, M. Acunzo, L. Puca, M. Incoronato, C. M. Croce, G. Condorelli, Akt regulates drug-induced cell death through Bcl-w downregulation, PloS one 3 (12) (2008) e4070.
[79] S. Saini, S. Arora, S. Majid, V. Shahryari, Y. Chen, G. Deng, S. Yamamura, K. Ueno, R. Dahiya, Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer, Cancer prevention research 4 (10) (2011) 1698-709.
[80] X. Zhang, Y. Zhang, X. Liu, A. Fang, P. Li, Z. Li, T. Liu, Y. Yang, L. Du, C. Wang, MicroRNA-203 Is a Prognostic Indicator in Bladder Cancer and Enhances Chemosensitivity to Cisplatin via Apoptosis by Targeting Bcl-w and Survivin, PloS one 10 (11) (2015) e0143441.
[81] L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012, CA: a cancer journal for clinicians 65 (2) (2015) 87-108.
[82] K. Fite, J. Gomez-Cambronero, Downregulation of miRs 203, 887, 3619 and 182 prevent vimentin-triggered, phospholipase D (PLD)-mediated cancer cell invasion, The Journal of biological chemistry (2015).
[83] D. Luo, J. M. Wilson, N. Harvel, J. Liu, L. Pei, S. Huang, L. Hawthorn, H. Shi, A systematic evaluation of miRNA: mRNA interactions involved in the migration and invasion of breast cancer cells, J Transl Med 11 (2013) 57.
[84] P. Ru, R. Steele, E. C. Hsueh, R. B. Ray, Anti-miR-203 Upregulates SOCS3 Expression in Breast Cancer Cells and Enhances Cisplatin Chemosensitivity, Genes & cancer 2 (7) (2011) 720-7.
[85] P. Li, Y. Guo, G. Bledsoe, Z. Yang, L. Chao, J. Chao, Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and microRNA synthesis, Exp Cell Res 340 (2) (2016) 305-14.
[86] K. Fite, L. Elkhadragy, J. Gomez-Cambronero, A REPERTOIRE OF MICRO-RNAs REGULATES CANCER CELL STARVATION BY TARGETING PHOSPHOLIPASE D (PLD) IN A FEEDBACK LOOP THAT OPERATES MAXIMALLY IN CANCER CELLS, Mol Cell Biol (2016).
[87] C. Wang, X. Zheng, C. Shen, Y. Shi, MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells, Journal of experimental & clinical cancer research: CR 31 (2012) 58.
[88] J. Yin, G. Zheng, X. Jia, Z. Zhang, W. Zhang, Y. Song, Y. Xiong, Z. He, A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells, PloS one 8 (9) (2013) e73268.
[89] H. Taipaleenmaki, G. Browne, J. Akech, J. Zustin, A. J. van Wijnen, J. L. Stein, E. Hesse, G. S. Stein, J. B. Lian, Targeting of Runx2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease, Cancer research 75 (7) (2015) 1433-44.
[90] Y. Zhou, H. Y. Hu, W. Meng, L. Jiang, X. Zhang, J. J. Sha, Z. Lu, Y. Yao, MEK inhibitor effective against proliferation in breast cancer cell, Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 35 (9) (2014) 9269-79.
[91] R. Sandhu, A. G. Rivenbark, W. B. Coleman, Loss of post-transcriptional regulation of DNMT3b by microRNAs: a possible molecular mechanism for the hypermethylation defect observed in a subset of breast cancer cell lines, International journal of oncology 41 (2) (2012) 721-32.
[92] R. Sandhu, A. G. Rivenbark, R. M. Mackler, C. A. Livasy, W. B. Coleman, Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer, International journal of oncology 44 (2) (2014) 563-72.
[93] Z. Zhang, B. Zhang, W. Li, L. Fu, L. Fu, Z. Zhu, J. T. Dong, Epigenetic Silencing of miR-203 Upregulates SNAI2 and Contributes to the Invasiveness of Malignant Breast Cancer Cells, Genes & cancer 2 (8) (2011) 782-91.
[94] D. Madhavan, C. Peng, M. Wallwiener, M. Zucknick, J. Nees, S. Schott, A. Rudolph, S. Riethdorf, A. Trumpp, K. Pantel, C. Sohn, J. Chang-Claude, A. Schneeweiss, B. Burwinkel, Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis, Carcinogenesis (2016).
[95] W. Song, H. G. Jeon, Incidence of kidney, bladder, and prostate cancers in Korea: An update, Korean J Urol 56 (6) (2015) 422-8.
[96] D. Petillo, E. J. Kort, J. Anema, K. A. Furge, X. J. Yang, B. T. Teh, MicroRNA profiling of human kidney cancer subtypes, International journal of oncology 35 (1) (2009) 109-14.
[97] S. Zhao, D. S. Yao, J. Y. Chen, N. Ding, Aberrant expression of miR-20a and miR-203 in cervical cancer, Asian Pacific journal of cancer prevention: APJCP 14 (4) (2013) 2289-93.
[98] M. Seifoleslami, M. K. Khameneie, F. Mashayekhi, F. Sedaghati, K. Ziari, K. Mansouri, A. Safari, Identification of microRNAs (miR-203/miR-7) as potential markers for the early detection of lymph node metastases in patients with cervical cancer, Tumour Biol (2015).
[99] L. Mao, Y. Zhang, W. Mo, Y. Yu, H. Lu, BANF1 is downregulated by IRF1-regulated microRNA-203 in cervical cancer, PloS one 10 (2) (2015) e0117035.
[100] X. Zhu, K. Er, C. Mao, Q. Yan, H. Xu, Y. Zhang, J. Zhu, F. Cui, W. Zhao, H. Shi, miR-203 suppresses tumor growth and angiogenesis by targeting VEGFA in cervical cancer, Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 32 (1) (2013) 64-73.
[101] S. Zhao, D. Yao, J. Chen, N. Ding, Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer, Genetic testing and molecular biomarkers 17 (8) (2013) 631-6.
[102] K. Gocze, K. Gombos, K. Juhasz, K. Kovacs, B. Kajtar, M. Benczik, P. Gocze, B. Patczai, I. Arany, I. Ember, Unique microRNA expression profiles in cervical cancer, Anticancer research 33 (6) (2013) 2561-7.
[103] A. Botezatu, C. D. Goia-Rusanu, I. V. Iancu, I. Huica, A. Plesa, D. Socolov, C. Ungureanu, G. Anton, Quantitative analysis of the relationship between microRNA124a, -34b and -203 gene methylation and cervical oncogenesis, Molecular medicine reports 4 (1) (2011) 121-8.
[104] Y. W. Huang, C. T. Kuo, J. H. Chen, P. J. Goodfellow, T. H. Huang, J. S. Rader, D. S. Uyar, Hypermethylation of miR-203 in endometrial carcinomas, Gynecol Oncol 133 (2) (2014) 340-5.
[105] S. Wang, X. Zhao, J. Wang, Y. Wen, L. Zhang, D. Wang, H. Chen, Q. Chen, W. Xiang, Upregulation of microRNA-203 is associated with advanced tumor progression and poor prognosis in epithelial ovarian cancer, Medical oncology 30 (3) (2013) 681.
[106] G. Zhao, Y. Guo, Z. Chen, Y. Wang, C. Yang, A. Dudas, Z. Du, W. Liu, Y. Zou, E. Szabo, S. C. Lee, M. Sims, W. Gu, T. Tillmanns, L. M. Pfeffer, G. Tigyi, J. Yue, miR-203 Functions as a Tumor Suppressor by Inhibiting Epithelial to Mesenchymal Transition in Ovarian Cancer, J Cancer Sci Ther 7 (2) (2015) 34-43.
[107] T. K. Chung, T. H. Cheung, N. Y. Huen, K. W. Wong, K. W. Lo, S. F. Yim, N. S. Siu, Y. M. Wong, P. T. Tsang, M. W. Pang, M. Y. Yu, K. F. To, S. C. Mok, V. W. Wang, C. Li, A. Y. Cheung, G. Doran, M. J. Birrer, D. I. Smith, Y. F. Wong, Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women, Int J Cancer 124 (6) (2009) 1358-65.
[108] M. A. Castilla, G. Moreno-Bueno, L. Romero-Perez, K. Van De Vijver, M. Biscuola, M. A. Lopez-Garcia, J. Prat, X. Matias-Guiu, A. Cano, E. Oliva, J. Palacios, Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma, J Pathol 223 (1) (2011) 72-80.
Cite This Article
  • APA Style

    Lei Zhan, Bing Wei. (2018). The Amphibolous Role of miR-203 in Gastrointestinal and Urogenital Cancers. International Journal of Animal Science and Technology, 1(1), 5-14. https://doi.org/10.11648/j.ijast.20170101.12

    Copy | Download

    ACS Style

    Lei Zhan; Bing Wei. The Amphibolous Role of miR-203 in Gastrointestinal and Urogenital Cancers. Int. J. Anim. Sci. Technol. 2018, 1(1), 5-14. doi: 10.11648/j.ijast.20170101.12

    Copy | Download

    AMA Style

    Lei Zhan, Bing Wei. The Amphibolous Role of miR-203 in Gastrointestinal and Urogenital Cancers. Int J Anim Sci Technol. 2018;1(1):5-14. doi: 10.11648/j.ijast.20170101.12

    Copy | Download

  • @article{10.11648/j.ijast.20170101.12,
      author = {Lei Zhan and Bing Wei},
      title = {The Amphibolous Role of miR-203 in Gastrointestinal and Urogenital Cancers},
      journal = {International Journal of Animal Science and Technology},
      volume = {1},
      number = {1},
      pages = {5-14},
      doi = {10.11648/j.ijast.20170101.12},
      url = {https://doi.org/10.11648/j.ijast.20170101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijast.20170101.12},
      abstract = {miR-203, as a member of the miRNAs family, play a major role in control of gene expression during normal development and are disrupted in the initiation and progression of specific diseases. It was worth nothing that a growing body of evidence indicated an abnormal expression of miR-203 in several human leading cancers including gastrointestinal and urogenital cancers. The cytosine-phosphoguanine (CpG)-island methylation was one of the most significant factors which controlled the expression of miR-203. Furthermore, miR-203 participated in these cancers via targeting its downstream genes. However, the precise regulatory mechanisms underlying miR-203 association with these cancers are still not fully understood. The aim of this review is to sum up the collective knowledge of miR-203 in gastrointestinal and urogenital cancers.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Amphibolous Role of miR-203 in Gastrointestinal and Urogenital Cancers
    AU  - Lei Zhan
    AU  - Bing Wei
    Y1  - 2018/01/03
    PY  - 2018
    N1  - https://doi.org/10.11648/j.ijast.20170101.12
    DO  - 10.11648/j.ijast.20170101.12
    T2  - International Journal of Animal Science and Technology
    JF  - International Journal of Animal Science and Technology
    JO  - International Journal of Animal Science and Technology
    SP  - 5
    EP  - 14
    PB  - Science Publishing Group
    SN  - 2640-1312
    UR  - https://doi.org/10.11648/j.ijast.20170101.12
    AB  - miR-203, as a member of the miRNAs family, play a major role in control of gene expression during normal development and are disrupted in the initiation and progression of specific diseases. It was worth nothing that a growing body of evidence indicated an abnormal expression of miR-203 in several human leading cancers including gastrointestinal and urogenital cancers. The cytosine-phosphoguanine (CpG)-island methylation was one of the most significant factors which controlled the expression of miR-203. Furthermore, miR-203 participated in these cancers via targeting its downstream genes. However, the precise regulatory mechanisms underlying miR-203 association with these cancers are still not fully understood. The aim of this review is to sum up the collective knowledge of miR-203 in gastrointestinal and urogenital cancers.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China

  • Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China

  • Sections