Mathematics and Computer Science
Volume 5, Issue 1, January 2020, Pages: 14-30
Received: Jan. 10, 2020;
Accepted: Jan. 31, 2020;
Published: Feb. 13, 2020
Views 677 Downloads 228
Authors
Bashir Kagara Yusuf, Department of Computer, Ibrahim Badamasi Babangida University, Lapai, Nigeria
Kamil Ahmad Bin Mahmood, Department of Computer and Information Sciences, Universiti Teknologi Petronas (UTP), Bandar Seri Iskandar, Malaysia
Bashir Kagara Yusuf,
Kamil Ahmad Bin Mahmood,
Towards Cryptanalysis of a Variant Prime Numbers Algorithm, Mathematics and Computer Science.
Vol. 5, No. 1,
2020, pp. 14-30.
doi: 10.11648/j.mcs.20200501.13
[1]
L. M. Adleman and M. A. Huang, "Primality testing and abelian varieties over finite fields," Lecture Notes in Mathematics, vol. 1512, Springer-Verlag, 1992.
[2]
L. M. Adleman, C Pomerance and R. S. Rumely, “On distinguishing prime numbers from composite numbers,” Annals of Mathematics, vol. 117, pp. 173-206, 1983.
[3]
M. Agrawal, N. Kayal and N. Saxena, "Primes is in P," Annals of Mathematics, vol. 160 (2), pp. 781-793, 2004.
[4]
W. S. Anglin, "The square pyramid puzzle," The American Mathematical Monthly, Mathematical Association of America, vol. 97 (2), pp. 120-124, 1990. doi: 10.2307/2323911, http://www.jstor.org/stable/2323911.
[5]
A. L, Frank, "An overview of elliptic curve primality proving," In Other Words 2, 2011. Available online: http://www.stanford.edu/class/cs259c/finalpapers/primalityproving.pdf.
[6]
W. Bosma and M. van der Hulst, “Primality proving with cyclotomy,” PhD thesis: Universiteit van Amsterdam, 1990.
[7]
T. F. Boucher, "On cyclotomic primality tests," Master’s thesis, University of Tennessee, 2011.
[8]
D. M Bressoud, “Factorization and primality testing,” Springer Science and Business Media, 2012.
[9]
G. A. Einicke, “Smoothing, filtering and prediction: estimating the past, present and future,” Intech: Janeza Trdine, 2012.
[10]
D. A. Freedman, Statistical Models: Theory and Practice, Cambridge University Press, 2009.
[11]
J. Havil, “Gamma: exploring euler's constant,” The Mathematical Intelligence, Princeton University Press, pp 1-260, 2009.
[12]
B. Gates, The Road Ahead. New York: Viking, 1995.
[13]
S. Goldwasser and J. Kilian, "Almost all primes can be quickly certified," in Proc. 18th STOC, pp. 316-329, 1986.
[14]
R. Busatto, “Using time series to assess data quality intelecommunications data warehouses,” in Proceedings of the 2000 Conference on Information Quality, pp. 129-136, 2000.
[15]
Solovay, R. M. Strassen and Volker, “A fast Monte-Carlo test for primality,” SIAM Journal on Computing,” vol. 6 (1), pp. 84-85, 1977 doi: 10.1137/0207009/ Available online: http://www.revolvy.com/topic/Solovay-Strassen%20primality%20test&item_type=topic.
[16]
L. L Nathans, F. L. Oswald and K. Nimon, “Interpreting multiplelinear regression: a guidebook of variable importance,” Practical Assessment, Researchand Evaluation, vol. 17 (9), 2012. Available online: http://pareonline.net/getvn.asp?v=17&n=9
[17]
J. Jakun, Registered Certificates of Primality, 1975. Available online: wwwmath.anu.edu.au/~brent/pd/AdvCom2t.pdf Posted: http://jeremykun.com/2013/06/16/miller-rabin-primality-test/
[18]
E. W. Weisstein, “Prime number,” MathWorld, 2004. Available online: http://mathworld.wolfram.com/PrimeNumber.html.
[19]
J. Hoffstein, J. Pipher and J. H. Silverman, An Introduction to Mathematical Cryptography, Springer Science and Business Media, 2nd ed, 2014.
[20]
Y. Motohashi, The Twin Prime Conjecture, Marh. NT, 2014. Available online: www.math.cst.nihon-u.ac.jp/~ymoto/.
[21]
D. F. Andrews, “A robust methodfor multiple linear regression,” Journal of Technometrics (Amrtican Statistical Association), vol. 16 (4), pp. 523531, 2012. Available online: http://dx.doi.org/10.1080/00401706.1974.10489233.
[22]
http://www.theoremoftheday.org/LogicAndComputerScience /Pratt/TotDPratt.pdf, accessed on: 201403241130.
[23]
D. H. Lehmer, “An extended theory of Lucas’ functions,” Annals of Mathematics, vol. 31 (3), pp. 419–448, 1930.
[24]
L. C, Washinton, Elliptic Curves: Number Theory and Cryptography. 2nd ed, Chapman and Hakk/VRC, 2008.
[25]
D. A. Lind, W. G. Marchal and S. A. Wathen, Statistical Techniques in Business & Economics, McGraw-Hill, NY: Irwin, pp. 461-542, 2012.
[26]
G. L. Miller, “Riemann’s hypothesis and tests for primality,” Journal of Computer and System Sciences, vol. 13 (3), 1976.
[27]
K. H. Rosen and K. Krithivasan, Discrete Mathematics and Its Applications, 7 ed., McGraw-Hill, NY: Connect Learn Succeed, pp. 237-306, 2013.
[28]
R. Schoof, "Four primality testing algorithms," Algorithmic Number Theory, MSRI Publications, vol. 44, pp. 101-126, 2008.
[29]
R. Solovay and V. Strassen, "A fast Monte-Carlo test for primality," SIAM J. Comput. vol. 6。
[30]
Y. Zhang, "Bounded Gaps Between Primes," Annals of Mathematics, JSTOR Publications, vol. 179 (3), pp. 1121-1174, 2014.