| Peer-Reviewed

Cytoarchitecure and Connectivity of the Superior Colliculus in Mouse Brain

Received: 7 June 2018    Accepted: 26 June 2018    Published: 18 July 2018
Views:       Downloads:
Abstract

Superior Colliculus (SC) plays a vital role in visual target selection and attention shifting; it also an important structure in studying the central nervous system. However, the cytoarchitecture and connectivity of the SC in mouse brain have not been explicitly explored. In this paper, to investigate the structural delineations and of connectivity SC, we first delineated the morphology of the SC by Nissl stain, and further explored different genes expressed in the SC. It demonstrates that gene Tpd52l1 is densely expressed in the SC, which helps describe the borders of the SC. In addition, we explore the connectivity of Superior Colliculus (validating the projections from other structures to SC and examining the projections from SC to other structure). The anterograde and retrograde projection circuitries between SC and IC are particularly addressed, which indicates that the SC is involved in the visual, auditory and other somatosensory physiological activities.

Published in International Journal of Biochemistry, Biophysics & Molecular Biology (Volume 3, Issue 2)
DOI 10.11648/j.ijbbmb.20180302.12
Page(s) 30-37
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Superior Colliculus, Cytoarchitecure, Connectivity, Gene Expression, Mouse Brain

References
[1] Inayat, S., Barchini, J., Chen, H., Feng, L., Liu, X., & Cang, J. (2015). Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction. Journal of Neuroscience, 35(20), 7992-8003.
[2] Huerta, M. F., Frankfurter, A., & Harting, J. K. (1983). Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. Journal of Comparative Neurology, 220(2), 147-167.
[3] Grantyn, R. (1987). Gaze control through superior colliculus: structure and function. Reviews of oculomotor research, 2, 273-333.
[4] Harting, J. K., Huerta, M. F., Hashikawa, T., & van Lieshout, D. P. (1991). Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. Journal of Comparative Neurology, 304(2), 275-306.
[5] Isa, T. (2002). Intrinsic processing in the mammalian superior colliculus. Current opinion in neurobiology, 12(6), 668-677.
[6] Baldwin, M. K., & Kaas, J. H. (2012). Cortical projections to the superior colliculus in prosimian galagos (Otolemur garnetti). Journal of Comparative Neurology, 520(9), 2002-2020.
[7] Smith, P. H., Manning, K. A., & Uhlrich, D. J. (2010). Evaluation of inputs to rat primary auditory cortex from the suprageniculate nucleus and extrastriate visual cortex. Journal of Comparative Neurology, 518(18), 3679-3700.
[8] Khibnik, L. A., Tritsch, N. X., & Sabatini, B. L. (2014). A Direct Projection from Mouse Primary Visual Cortex to Dorsomedial Striatum. PLoS ONE, 9(8), e104501.
[9] Zhao, J., Urakawa, S., Matsumoto, J., Li, R., Ishii, Y., Sasahara, M., & Nishijo, H. (2013). Changes in Otx2 and parvalbumin immunoreactivity in the superior colliculus in the platelet-derived growth factor receptor-β knockout mice. BioMed research international, 2013.
[10] Hoshino, K., Horie, M., Nagy, A., Berényi, A., Benedek, G., & Norita, M. (2010). Direct synaptic connections between superior colliculus afferents and thalamo-insular projection neurons in the feline suprageniculate nucleus: A double-labeling study with WGA-HRP and kainic acid. Neuroscience research, 66(1), 7-13.
[11] Fisher, S. D., & Reynolds, J. N. J. (2014). The intralaminar thalamus—an expressway linking visual stimuli to circuits determining agency and action selection. Frontiers in Behavioral Neuroscience, 8, 115.
[12] Langer, T. P., & Lund, R. D. (1974). The upper layers of the superior colliculus of the rat: a Golgi study. Journal of Comparative Neurology, 158(4), 405-435.
[13] Schneider, G. E. (1969). Two visual systems. Science.
[14] Cynader, M., & Berman, N. (1972). Receptive-field organization of monkey superior colliculus. Journal of Neurophysiology, 35(2), 187-201.
[15] Hubel, D. H., LeVay, S., & Wiesel, T. N. (1975). Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain research, 96(1), 25-40.
[16] Mathers, J., Benumof, J. L., & Wahrenbrock, E. A. (1977). General anesthetics and regional hypoxic pulmonary vasoconstriction. Anesthesiology, 46(2), 111-114.
[17] Thalluri, J., & Henry, G. H. (1989). Neurons of the striate cortex driven trans-synaptically by electrical stimulation of the superior colliculus. Vision research, 29(10), 1319-1323.
[18] Bickford, P., Heron, C., Young, D. A., Gerhardt, G. A., & dela Garza, R. (1992). Impaired acquisition of novel locomotor tasks in aged and norepinephrine-depleted F344 rats. Neurobiology of aging, 13(4), 475-481.
[19] Roffler-Tarlov, S., Schildkraut, J. J., & Draskoczy, P. R. (1973). Effects of acute and chronic administration of desmethylimipramine on the content of norepinephrine and other monoamines in the rat brain. Biochemical pharmacology, 22(22), 2923-2926.
[20] Harting, J. K., & Van Lieshout, D. P. (1991). Spatial relationships of axons arising from the substantia nigra, spinal trigeminal nucleus, and pedunculopontine tegmental nucleus within the intermediate gray of the cat superior colliculus. Journal of comparative neurology, 305(4), 543-558.
[21] Redgrave, P., Mitchell, I. J., & Dean, P. (1987). Descending projections from the superior colliculus in rat: a study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Experimental brain research, 68(1), 147-167.
[22] Bajo, V. M., Merchán, M. A., López, D. E., & Rouiller, E. M. (1993). Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. Journal of Comparative Neurology, 334(2), 241-262.
[23] Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A. & Chen, L. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445(7124), 168.
[24] Pessoa, L. (2013). The cognitive-emotional brain: From interactions to integration. MIT press.
[25] O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4; 44 (D1): D733-45.
[26] Weber, H., Kittel-Schneider, S., Gessner, A., Domschke, K., Neuner, M., Jacob, C. P. & Baune, B. T. (2011). Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD. Neuropsychopharmacology, 36(10), 2076-2085.
[27] https://www.ncbi.nlm.nih.gov/refseq/announcements/2015/
[28] Boue‐Grabot, E., Roudbaraki, M., Bascles, L., Tramu, G., Bloch, B., & Garret, M. (1998). Expression of GABA receptor ρ subunits in rat brain. Journal of neurochemistry, 70(3), 899-907.
[29] Hughes, H. C., & Mullikin, W. H. (1984). Brainstem afferents to the lateral geniculate nucleus of the cat. Experimental brain research, 54(2), 253-258.
[30] Fuller, G. N., & Guiloff, R. J. (1987). Migrainous olfactory hallucinations. Journal of neurology, neurosurgery, and psychiatry, 50(12), 1688.
[31] Halverson, H. E., Hubbard, E. M., & Freeman, J. H. (2009). Stimulation of the lateral geniculate, superior colliculus, or visual cortex is sufficient for eyeblink conditioning in rats. Learning & Memory, 16(5), 300–307. http://doi.org/10.1101/lm.1340909
[32] Wurtz, R. H., & Kandel, E. R. (2000). Central visual pathways. Principles of neural science, 4, 523-545.
[33] Bouwmans, G., Bigot, L., Quiquempois, Y., Lopez, F., Provino, L., & Douay, M. (2005). Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm. Optics Express, 13(21), 8452-8459.
[34] Bartlett, E. L. (2013). The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain and language, 126(1), 29-48.
[35] Bulkin, D. A., & Groh, J. M. (2011). Systematic mapping of the monkey inferior colliculus reveals enhanced low frequency sound representation. Journal of neurophysiology, 105(4), 1785-1797.
[36] Coizet, V., Overton, P. G., & Redgrave, P. (2007). Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. Journal of Comparative Neurology, 500(6), 1034-1049.
[37] Pickard, G. E., So, K. F., & Pu, M. (2015). Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells? Neuroscience & Biobehavioral Reviews, 57, 118-131.
[38] Shipp, S., & Grant, S. (1991). Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex. Visual neuroscience, 6(04), 339-355.
[39] Martinez-Conde, S., Cudeiro, J., Grieve, K. L., Rodriguez, R., Rivadulla, C., & Acuña, C. (1999). Effects of feedback projections from area 18 layers 2/3 to area 17 layers 2/3 in the cat visual cortex. Journal of Neurophysiology, 82(5), 2667-2675.
[40] Stockard-Pope, J. E., Werner, S. S., & Bickford, R. G. (1992). Atlas of neonatal electroencephalography. Raven Press.
[41] Bajo, V. M., Nodal, F. R., Bizley, J. K., & King, A. J. (2007). The non-lemniscal auditory cortex in ferrets: convergence of corticotectal inputs in the superior colliculus. Auditory neuroanatomy: A sound foundation for sound processing, 77.
[42] Aparicio, M. A., & Saldaña, E. (2009). Tectotectal neurons and projections: a proposal to establish a consistent nomenclature. The Anatomical Record, 292(2), 175-177.
[43] Winer, J. A., Chernock, M. L., Larue, D. T., & Cheung, S. W. (2002). Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey. Hearing research, 168(1), 181-195.
[44] Aparicio, M. A., & Saldaña, E. (2009). Tectotectal neurons and projections: a proposal to establish a consistent nomenclature. The Anatomical Record, 292(2), 175-177.
Cite This Article
  • APA Style

    Youshan Zhang. (2018). Cytoarchitecure and Connectivity of the Superior Colliculus in Mouse Brain. International Journal of Biochemistry, Biophysics & Molecular Biology, 3(2), 30-37. https://doi.org/10.11648/j.ijbbmb.20180302.12

    Copy | Download

    ACS Style

    Youshan Zhang. Cytoarchitecure and Connectivity of the Superior Colliculus in Mouse Brain. Int. J. Biochem. Biophys. Mol. Biol. 2018, 3(2), 30-37. doi: 10.11648/j.ijbbmb.20180302.12

    Copy | Download

    AMA Style

    Youshan Zhang. Cytoarchitecure and Connectivity of the Superior Colliculus in Mouse Brain. Int J Biochem Biophys Mol Biol. 2018;3(2):30-37. doi: 10.11648/j.ijbbmb.20180302.12

    Copy | Download

  • @article{10.11648/j.ijbbmb.20180302.12,
      author = {Youshan Zhang},
      title = {Cytoarchitecure and Connectivity of the Superior Colliculus in Mouse Brain},
      journal = {International Journal of Biochemistry, Biophysics & Molecular Biology},
      volume = {3},
      number = {2},
      pages = {30-37},
      doi = {10.11648/j.ijbbmb.20180302.12},
      url = {https://doi.org/10.11648/j.ijbbmb.20180302.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijbbmb.20180302.12},
      abstract = {Superior Colliculus (SC) plays a vital role in visual target selection and attention shifting; it also an important structure in studying the central nervous system. However, the cytoarchitecture and connectivity of the SC in mouse brain have not been explicitly explored. In this paper, to investigate the structural delineations and of connectivity SC, we first delineated the morphology of the SC by Nissl stain, and further explored different genes expressed in the SC. It demonstrates that gene Tpd52l1 is densely expressed in the SC, which helps describe the borders of the SC. In addition, we explore the connectivity of Superior Colliculus (validating the projections from other structures to SC and examining the projections from SC to other structure). The anterograde and retrograde projection circuitries between SC and IC are particularly addressed, which indicates that the SC is involved in the visual, auditory and other somatosensory physiological activities.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Cytoarchitecure and Connectivity of the Superior Colliculus in Mouse Brain
    AU  - Youshan Zhang
    Y1  - 2018/07/18
    PY  - 2018
    N1  - https://doi.org/10.11648/j.ijbbmb.20180302.12
    DO  - 10.11648/j.ijbbmb.20180302.12
    T2  - International Journal of Biochemistry, Biophysics & Molecular Biology
    JF  - International Journal of Biochemistry, Biophysics & Molecular Biology
    JO  - International Journal of Biochemistry, Biophysics & Molecular Biology
    SP  - 30
    EP  - 37
    PB  - Science Publishing Group
    SN  - 2575-5862
    UR  - https://doi.org/10.11648/j.ijbbmb.20180302.12
    AB  - Superior Colliculus (SC) plays a vital role in visual target selection and attention shifting; it also an important structure in studying the central nervous system. However, the cytoarchitecture and connectivity of the SC in mouse brain have not been explicitly explored. In this paper, to investigate the structural delineations and of connectivity SC, we first delineated the morphology of the SC by Nissl stain, and further explored different genes expressed in the SC. It demonstrates that gene Tpd52l1 is densely expressed in the SC, which helps describe the borders of the SC. In addition, we explore the connectivity of Superior Colliculus (validating the projections from other structures to SC and examining the projections from SC to other structure). The anterograde and retrograde projection circuitries between SC and IC are particularly addressed, which indicates that the SC is involved in the visual, auditory and other somatosensory physiological activities.
    VL  - 3
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Computer Science and Engineering, Lehigh University, Bethlehem, USA

  • Sections