| Peer-Reviewed

New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies

Received: 24 August 2017    Accepted: 8 October 2017    Published: 12 January 2018
Views:       Downloads:
Abstract

Pyrano[2,3-c]pyrazole ligand and their transition metal complex with nickel (NiIIMPC) were synthesized and characterization by elemental analyses, magnetic susceptibility, FT IR, UV-Vis, and mass spectroscopy. Complex have been investigated as functional models for catechol oxidase activity by using a catechol as a model substrate. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics. Nickel complex has been used in homogenous oxidation of catechol in presence of a green oxidant H2O2. kinetic parameters were obtained Vmax= 2.698×10-3MS-1, Km = 7.878M, kcat= 4.496×10-2S-1 and kcat/Km = 0.5707 M-1S-1.

Published in Biochemistry and Molecular Biology (Volume 3, Issue 1)
DOI 10.11648/j.bmb.20180301.11
Page(s) 1-5
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Pyrano[2,3-c]Pyrazole, Nickel, Oxidation, Catecholase

References
[1] E. V. Akimova, D. H. Busch, P. K. Kahol, N. Pinto, N. W. Alcock, H. J. Clase, Inorg. Chem. 36 (1997) 510.
[2] H. Okawa, H. Sakiyama, Pure Appl. Chem. 67 (1995) 273.
[3] R. Cini, Inorg Chem. 22 (2000)151.
[4] D. Kovala, J Inorg Biochem 79 (2000)153.
[5] J. Haggin, Chem. Eng. News 71 (1993) 23.
[6] N. Boussaleh, R. Touzani, I. Bouabdallah, S. Ghalem, S. El Kadiri, Int. J. Acad. Res. 2 (2009) 137.
[7] A. Djedouani, F. Abrigach, M. Khoutoul, A. Mohamadou, A. Bendaas, A. Oussaid, R. Touzani, Orient. J. Chem. 31 (1) (2015) 97.
[8] A. Mouadili, A. El Ouafi, A. Attayibat, S. Radi, R. Touzani, J. Mater. Environ. Sci. 6 (2015) 2166.
[9] S. R. Mandha, S. Siliveri, M. Alla, V. R. Bommena, M. R. Bommineni, S. Balasubramanian, Bioorganic and Medicinal Chemistry Letters 22 (2012) 5272.
[10] E. C. Witte, P. Neubert, A. Roesoh,. Chem. Abstr. 104 (1986) 224915f.
[11] J. L. Wang, D. Liu, Z. J. Zheng, S. Shan, X. Han, S. M. Srinivasula, C. M. Croce, E. S. Alnemri, Z. Huang, Proc. Natl. Acad. Sci. U.S.A. 97 (2009) 7124.
[12] M. E. A. Zaki, E. M. Morsy, M Abdul, Heterocycl. Commun. 10 (2004) 97.
[13] (a) M. E. A. Zaki, H. A. Saliman, O. A. Hickal, A. E. Rashad, Natureforsch, C: Biosci. 61 (2006)1. (b) C. K. Sheng, J. H. Li, N. J. Hideo, Med. Chem. 27 (1984) 539.
[14] SK. Mal, M. Mitra, H. Yadav, CS. Purohit, AR. Choudhury, R. Ghosh, Polyhedron. 111 (2016) 118.
[15] N. Beyazit, D. Çakmak, C. Demetgül, Tetrahedron 73 (2017) 2774.
[16] KC. Gupta, AK. Sutar, Coord Chem Rev. 252 (2008) 1420.
[17] M. Mitra, AK. Maji, BK. Ghosh, et al. Polyhedron. 61 (2013) 15.
[18] AK. Ghosh, M. Mitra, A. Fathima, et al. Polyhedron. 107 (2016) 1.
[19] S. Anbu, A. Paul, APC. Ribeiro, Inorg Chim Acta. 450 (2016) 426.
[20] T. Megyes, Z. May, G. Schubert, T. Grosz, LI. Simandi, T. Radnai, Inorg Chim Acta. 359 (2006) 2329.
[21] L. Michaelis, M. L. Menten, Biochem. Z 49 (1913) 333.
[22] S. R. Mandha, S. Siliveri, M. Alla, V. R. Bommena, M. R. Bommineni, S. Balasubramanian, Bioorganic and Medicinal Chemistry Letters 22 (2012) 5272.
[23] J. F Zhou, S. J. Tu, Y. Gao, M. Ji, J. Org. Chem. 21 (2001) 742.
[24] S. R. Mandha, S. Siliveri, M. Alla, V. R. Bommena, M. R. Bommineni, S. Balasubramanian, Bioorganic and Medicinal Chemistry Letters 22 (2012) 5272.
[25] Z. Bouanane, M Bounekhel, M. Elkolli, F. A. brigach, M. Khoutoul, R. Bouyala, R. Touzani, A. Hellal, Journal of Molecular Structure 1139 (2017) 238.
[26] S. J. Zhuang, Q. X. Wang, J. Chem. Res. (2004)821.
[27] J. R. Ferraro, Plenum, New York (1971).
[28] A. A. El-Asmy, Y. M. Shaibi, I. M. Shedaiwa, M. A. Khattab, Inorg. Met. Org. Chem. 18 (1988)331.
[29] A. B. P. Lever, “Inorganic Electronic Spectroscopy”, Elsevier, Amsterdam, (1986).
[30] A. A. El-Asmy, M. Mounir, Transition Met. Chem. 13 (1988)143.
Cite This Article
  • APA Style

    Mohamed M. Al-Sayed. (2018). New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies. Biochemistry and Molecular Biology, 3(1), 1-5. https://doi.org/10.11648/j.bmb.20180301.11

    Copy | Download

    ACS Style

    Mohamed M. Al-Sayed. New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies. Biochem. Mol. Biol. 2018, 3(1), 1-5. doi: 10.11648/j.bmb.20180301.11

    Copy | Download

    AMA Style

    Mohamed M. Al-Sayed. New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies. Biochem Mol Biol. 2018;3(1):1-5. doi: 10.11648/j.bmb.20180301.11

    Copy | Download

  • @article{10.11648/j.bmb.20180301.11,
      author = {Mohamed M. Al-Sayed},
      title = {New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies},
      journal = {Biochemistry and Molecular Biology},
      volume = {3},
      number = {1},
      pages = {1-5},
      doi = {10.11648/j.bmb.20180301.11},
      url = {https://doi.org/10.11648/j.bmb.20180301.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bmb.20180301.11},
      abstract = {Pyrano[2,3-c]pyrazole ligand and their transition metal complex with nickel (NiIIMPC) were synthesized and characterization by elemental analyses, magnetic susceptibility, FT IR, UV-Vis, and mass spectroscopy. Complex have been investigated as functional models for catechol oxidase activity by using a catechol as a model substrate. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics. Nickel complex has been used in homogenous oxidation of catechol in presence of a green oxidant H2O2. kinetic parameters were obtained Vmax= 2.698×10-3MS-1, Km = 7.878M, kcat= 4.496×10-2S-1 and kcat/Km = 0.5707 M-1S-1.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies
    AU  - Mohamed M. Al-Sayed
    Y1  - 2018/01/12
    PY  - 2018
    N1  - https://doi.org/10.11648/j.bmb.20180301.11
    DO  - 10.11648/j.bmb.20180301.11
    T2  - Biochemistry and Molecular Biology
    JF  - Biochemistry and Molecular Biology
    JO  - Biochemistry and Molecular Biology
    SP  - 1
    EP  - 5
    PB  - Science Publishing Group
    SN  - 2575-5048
    UR  - https://doi.org/10.11648/j.bmb.20180301.11
    AB  - Pyrano[2,3-c]pyrazole ligand and their transition metal complex with nickel (NiIIMPC) were synthesized and characterization by elemental analyses, magnetic susceptibility, FT IR, UV-Vis, and mass spectroscopy. Complex have been investigated as functional models for catechol oxidase activity by using a catechol as a model substrate. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics. Nickel complex has been used in homogenous oxidation of catechol in presence of a green oxidant H2O2. kinetic parameters were obtained Vmax= 2.698×10-3MS-1, Km = 7.878M, kcat= 4.496×10-2S-1 and kcat/Km = 0.5707 M-1S-1.
    VL  - 3
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Chemistry Department, Faculty of Science & Arts Al-Mukhwah, Al-Baha University, Al-Baha, Saudi Arabia

  • Sections