International Journal of Computational and Theoretical Chemistry

| Peer-Reviewed |

Effect of an External Electric Field on Structure, Stability and Energetic of Mg2+CH3OH Complex: A DFT Study

Received: 25 November 2018    Accepted: 13 December 2018    Published: 10 January 2019
Views:       Downloads:

Share This Article

Abstract

To understand the structural and stability of fragmentation of Mg2+CH3OH Complex in gas phase under an external electric field, a quantum chemical calculation has been carried out with Density Functional Theory (DFT) at BMK/6-31+G (d). Different levels of applied electric field (0.0, 0.002, 0.004, 0.006, 0.008 and 0.01 a.u.) change the geometrical parameters as well as the energies of the complex. Variations in NPA atomic charges of the fragments for the applied fields were compared. The electric field was applied to the five major reaction channels of Mg2+CH3OH complex. At zero fields, the complex is thermodynamically unstable with respect to the loss of CH3OH+, CH3+, and CH3O+ but thermodynamically stable toward the loss of H+. The presence of large kinetic energy barriers for unimolecular dissociation prohibits the exothermic processes. With increases the field strength the thermodynamic stability of complex increases for all channels. The resultant dipole moment (μT) increases almost linearly with the increase of field. The complex becomes highly polarized for the higher field (0.01 a.u.) and the dipole moment becomes 14.77 D. The relationship between dissociation product and field strength is very complex due to the different responses of the reactants and transition states toward the external electric field.

DOI 10.11648/j.ijctc.20180602.11
Published in International Journal of Computational and Theoretical Chemistry (Volume 6, Issue 2, June 2018)
Page(s) 28-36
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Electric Field, Stability, Magnesium Dication Complex, Unimolecular, Kinetics, BMK

References
[1] K. Yamanouchi, Science, Vol. 295, 2002, p. 1659.
[2] P. Sharma, R. K. Vasta, D. K. Maity, S. K. Kulshreshtha, Chem. Phys. Lett, Vol. 382, 2003, p.637.
[3] C.-Y. Wu, Y.-J. Xiong, N. Ji, Y. He, Z. Gao, F. Kong, J. Phys. Chem. A. Vol. 105, 2001, p. 374.
[4] Y.-Q. Wang, J.-Y. Zhu, L. Wang, S.-L. Cong, Int. J. Quant. Chem. Vol. 106, 2006, p. 1138.
[5] R. Itakura, K. Yamanouchi, T. Tanabe, T. Okamoto, F. Kannari, J. Chem. Phys. Vol. 119, 2003, p. 4179.
[6] P. Tzallas et al., Chem. Phys. Lett. Vol. 343, 2001, p. 91.
[7] M. Ueyama, H. Hasegawa, A. Hishikawa, K. Yamanouchi, J. Chem. Phys. Vol. 123, 2005, p. 154305.
[8] S. Shaik, S. P. de Visser, D. Kumar, J. Am. Chem. Soc. Vol. 126, 2004, p. 11746.
[9] Y. C. Choi, C. Pak, K. S. Kim, J. Chem. Phys. Vol. 124, 2006, p. 094308.
[10] H. Kono, Y. Sato, N. Tanaka, T. Jato, K. Nakai, S. Koseki, Y. Fujimura, Chem. Phys. Vol. 304, 2004, p. 203.
[11] T. S. Zyubina, Y. A. Dyakov, S. H. Lin, A. D. Bandrauk, A. M. Mebel, J. Chem. Phys. Vol. 123 2005, p. 134320.
[12] A. M. Mebel, T. S. Zyubina, Y. A. Dyakov, A. D. Bandrauk, S. H. Lin, Int. J. Quantum Chem. Vol. 102, 2005, p. 506.
[13] H. Benedict, H. H. Limbach, M. Wehlan, W. P. Fehlhammer, N. S. Golubev, R. Janoschek, J. Am. Chem. Soc. Vol. 120, 1998, p. 2939.
[14] M. Ramos, I. Alkorta, J. Elguero, N. S. Golubev, G. S. Denisov, H. Benedict, H. H. Limbach, J. Phys. Chem. A. Vol. 101, 1997, p. 9791.
[15] J. G. Sosnicki, M. Langaard, P. E. Hansen, J. Org. Chem. Vol. 72, 2007, p. 4108.
[16] M. Macernis, B. P. Kietis, J. Sulskus, S. H. Lin, M. Hayashi, L. Valkunas, Chem. Phys. Lett. Vol. 466, 2008, p. 223.
[17] B. S. Mallik, A. Chandra, J. Phys. Chem. A, Vol. 112, 2008, p. 13518.
[18] I. Mata, E. Molins, I. Alkorta, E. Espinosa, J. Chem. Phys. Vol. 130, 2009, p. 044104.
[19] Y. Furukawa, K. Hoshina, K. Yamanouchi, H. Nakano. Chem. Phys. Lett. Vol. 414, 2005, p. 117−121.
[20] T. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H Nakano,. Chem. Phys. Lett. Vol. 419, 2006, p. 223−227.
[21] T. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H Nakano, Phys. B. Vol. 39, 2006, p. S515−S521.
[22] P. Liu, T. Okino, Y. Furukawa, T. Ichikawa, R. Itakura, K. Hoshina,. K. Yamanouchi, H. Nakano, Chem. Phys. Lett. Vol. 423, 2006, p. 187−191.
[23] T. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina,.; K. Yamanouchi, H. Nakano, Chem. Phys. Lett Vol. 423, 2006, p. 220−224.
[24] R. Itakura, P. Liu, Y. Furukawa, T. Okino, K. Yamanouchi, H. Nakano. J. Chem. Phys. Vol. 127,.2007, p. 104306.
[25] H. Xu, C. Marceau,. K. Nakai, T. Okino, S.-L Chin, K. Yamanouchi, J. Chem. Phys. Vol. 133, 2010, p. 071103.
[26] Xu, H.; Okino, T.; Kudou, T.; Yamanouchi, K.; Roither, S.; Kitzer, M.; Batuska, A.; Chin, S.-L. Effect of Laser Parameters on Ultrafast Hydrogen Migration in Methanol Studied by Coincidence Momentum Imaging. J. Phys. Chem. A. Vol.116, 2012, p. 2686−2690.
[27] Evelyn J. L. Toledo, Rogério Custodio, Teodorico C. Ramalho, Maria Eugênia Garcia Porto b, Zuy M. Magriotis. Journal of Molecular Structure: THEOCHEM, Vol. 915, 2009, p. 170–177.
[28] E. M. Stuve, Chemical Physics Letters, Vol. 519–520, 2012, p. 1–17.
[29] A. Modal, H. Seenivasan, S. Saurav and A. K Tiwari, Idian journal of chemistry, Vol. 52A, 2013, p. 1056-1060.
[30] H. siu-Feng Lu, F.-Y. Li, Chun-Chin Lin, K. Nagaya, Ito Chao, S. H. Lin, Chemical Physics Letters. Vol. 443, 2007, p. 178–182.
[31] S. Azam, A. H. Reshak, Int. J. Electrochem. Sci., Vol. 8, 2013, p. 10359.
[32] D. Rai, A. D. Kulkarni, S. P. Gejji, L. J. Bartolotti, R. K. Pathak, Journal of chemical physics, Vol. 138(4), 2013, p.044304.
[33] W J, A. Hehre, Inc. Irvine, CA, 2003.
[34] Jensen F, Introduction to Computational Chemistry, John Wiley & Sons Ltd., England, 2007.
[35] R. F. W. Bader Atoms in molecules - A quantum theory, Clarendon Press Oxford, 1990; Kryachko E S, Ludena E, Energy Density functional theory of atoms of many electron system: Academic Newyork, 1990.
[36] J. M. Seminario, Elesvier New York, 1996.
[37] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[38] A. D. Boese, J. M. L. Martin, Chem. Phys. Vol. 121, 2004, p. 3405-3416.
[39] G. A. Zhurko, D. A. Zhurko, ChemCraft version 1.8.
[40] A. E. Reed, R. B. Weinstock, F. A. Weinhold,. J. Chem. Phys. Vol., 83, 1985, p. 735-746.
[41] M. Ichihashi, C. A. Corbett, T. Hanmura, J. M. Lisy, T. Kondow, J. Phys. Chem. A, Vol. 109, 2005, p. 7872.
[42] A. M. El-Nahas, S. H. El-Demerdash, S. E. El-Shereefy, International Journal of Mass Spectrometry, Vol. 263, 2007, p. 267–275
[43] T. Ljjima, J. Mol. Struct. Vol. 212, 1989, p. 137.
[44] D. Farmanzadeh, Z. Ashtiani,, Struct. Chem. Vol. 21, 2010, p. 691.
[45] J. Mazurkiewicz, P. Tomasik, Natural Science, Vol. 4, 2012, p. 276.
[46] B. Kirtman, B. Champagne, D. M. J. Bishop, J. Am. Chem. Soc. Vol. 122, 2002, p. 8007.
Author Information
  • Chemistry Department, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt

Cite This Article
  • APA Style

    Safinaz H. El-Demerdash. (2019). Effect of an External Electric Field on Structure, Stability and Energetic of Mg2+CH3OH Complex: A DFT Study. International Journal of Computational and Theoretical Chemistry, 6(2), 28-36. https://doi.org/10.11648/j.ijctc.20180602.11

    Copy | Download

    ACS Style

    Safinaz H. El-Demerdash. Effect of an External Electric Field on Structure, Stability and Energetic of Mg2+CH3OH Complex: A DFT Study. Int. J. Comput. Theor. Chem. 2019, 6(2), 28-36. doi: 10.11648/j.ijctc.20180602.11

    Copy | Download

    AMA Style

    Safinaz H. El-Demerdash. Effect of an External Electric Field on Structure, Stability and Energetic of Mg2+CH3OH Complex: A DFT Study. Int J Comput Theor Chem. 2019;6(2):28-36. doi: 10.11648/j.ijctc.20180602.11

    Copy | Download

  • @article{10.11648/j.ijctc.20180602.11,
      author = {Safinaz H. El-Demerdash},
      title = {Effect of an External Electric Field on Structure, Stability and Energetic of Mg2+CH3OH Complex: A DFT Study},
      journal = {International Journal of Computational and Theoretical Chemistry},
      volume = {6},
      number = {2},
      pages = {28-36},
      doi = {10.11648/j.ijctc.20180602.11},
      url = {https://doi.org/10.11648/j.ijctc.20180602.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ijctc.20180602.11},
      abstract = {To understand the structural and stability of fragmentation of Mg2+CH3OH Complex in gas phase under an external electric field, a quantum chemical calculation has been carried out with Density Functional Theory (DFT) at BMK/6-31+G (d). Different levels of applied electric field (0.0, 0.002, 0.004, 0.006, 0.008 and 0.01 a.u.) change the geometrical parameters as well as the energies of the complex. Variations in NPA atomic charges of the fragments for the applied fields were compared. The electric field was applied to the five major reaction channels of Mg2+CH3OH complex. At zero fields, the complex is thermodynamically unstable with respect to the loss of CH3OH+, CH3+, and CH3O+ but thermodynamically stable toward the loss of H+. The presence of large kinetic energy barriers for unimolecular dissociation prohibits the exothermic processes. With increases the field strength the thermodynamic stability of complex increases for all channels. The resultant dipole moment (μT) increases almost linearly with the increase of field. The complex becomes highly polarized for the higher field (0.01 a.u.) and the dipole moment becomes 14.77 D. The relationship between dissociation product and field strength is very complex due to the different responses of the reactants and transition states toward the external electric field.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Effect of an External Electric Field on Structure, Stability and Energetic of Mg2+CH3OH Complex: A DFT Study
    AU  - Safinaz H. El-Demerdash
    Y1  - 2019/01/10
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ijctc.20180602.11
    DO  - 10.11648/j.ijctc.20180602.11
    T2  - International Journal of Computational and Theoretical Chemistry
    JF  - International Journal of Computational and Theoretical Chemistry
    JO  - International Journal of Computational and Theoretical Chemistry
    SP  - 28
    EP  - 36
    PB  - Science Publishing Group
    SN  - 2376-7308
    UR  - https://doi.org/10.11648/j.ijctc.20180602.11
    AB  - To understand the structural and stability of fragmentation of Mg2+CH3OH Complex in gas phase under an external electric field, a quantum chemical calculation has been carried out with Density Functional Theory (DFT) at BMK/6-31+G (d). Different levels of applied electric field (0.0, 0.002, 0.004, 0.006, 0.008 and 0.01 a.u.) change the geometrical parameters as well as the energies of the complex. Variations in NPA atomic charges of the fragments for the applied fields were compared. The electric field was applied to the five major reaction channels of Mg2+CH3OH complex. At zero fields, the complex is thermodynamically unstable with respect to the loss of CH3OH+, CH3+, and CH3O+ but thermodynamically stable toward the loss of H+. The presence of large kinetic energy barriers for unimolecular dissociation prohibits the exothermic processes. With increases the field strength the thermodynamic stability of complex increases for all channels. The resultant dipole moment (μT) increases almost linearly with the increase of field. The complex becomes highly polarized for the higher field (0.01 a.u.) and the dipole moment becomes 14.77 D. The relationship between dissociation product and field strength is very complex due to the different responses of the reactants and transition states toward the external electric field.
    VL  - 6
    IS  - 2
    ER  - 

    Copy | Download

  • Sections