Theoretical Study of Tautomeric Equilibrium, the Stability, Polarizability, HOMO-LUMO Analysis and Acidity of 4,4-diméthyl-3,4-dihydroquinolin-2(1H)-one Derivatives
International Journal of Computational and Theoretical Chemistry
Volume 7, Issue 2, December 2019, Pages: 107-114
Received: Aug. 13, 2019; Accepted: Aug. 28, 2019; Published: Sep. 11, 2019
Views 66      Downloads 16
Authors
Lucie Affoue Bede, Unit of Formation and Research of Sciences of Structures of Matter and Technology (UFR SSMT), University Felix Houphouët-Boigny, Abidjan, Ivory Coast
Benjamine Amon Assoma, Unit of Formation and Research of Sciences of Structures of Matter and Technology (UFR SSMT), University Felix Houphouët-Boigny, Abidjan, Ivory Coast
Latyfatou Laye Alao, Unit of Formation and Research of Sciences of Structures of Matter and Technology (UFR SSMT), University Felix Houphouët-Boigny, Abidjan, Ivory Coast
Denis Kicho Yapo, Unit of Formation and Research of Sciences of Structures of Matter and Technology (UFR SSMT), University Felix Houphouët-Boigny, Abidjan, Ivory Coast
Soleymane Kone, Unit of Formation and Research of Sciences of Structures of Matter and Technology (UFR SSMT), University Felix Houphouët-Boigny, Abidjan, Ivory Coast
Article Tools
Follow on us
Abstract
Quinoline derivatives have several reactionnels sites conferring them a hight reactivity. This makes them excellent precursors in the synthesis of new bioactive compounds. Considering the interest of quinoline chemistry and diversity of their applications, a study based on a theoretical approach of reactivity of 4,4-dimethyl-3,4-dihydro-quinolin-2(1H)-one and derivatives is carried. This study determines interaction sites of these derivatives in order to understand the mechanisms involved. Calculations are carried in gaseous phase and solution in N, N-dimethylformamide (DMF). Density Functional Theory (DFT/B3LYP) method associated with 6-311G(d) and 6-311+G (d) bases is used to perform these calculations. Results of the thermodynamic parameters showed that there is a tautomeric equilibrium relationship between the different derivatives Reactivity analysis based on Frontier Molecular Orbitals theory revealed that tautomers ketone are less reactive than tautomers enol. Calculation of Fukui indices indicates that the carbon atoms C2, C3, C5, C 7 and C8 of quinoline-2-one ring are sites favorable to nucleophilic attack. Atoms N1, C4, C6 and O11 are nucleophilic sites therefore favorable to an electrophilic attack. Methoxyl substituent (CH3O) decreases the acidity of nitrogen and oxygen atoms of quinolin-2-one while bromine atom increases acidity of these same sites. These results predict a deprotonation of the nitrogen (N1) of the brominated quinoline-2-ones less energetic than that of the methoxylated derivatives. Conclusively, this work provides data to elucidate the mechanisms to understand the reactivity of 4,4-diméthyl-3,4-dihydroquinolin-2(1H)-one derivatives.
Keywords
Theoretical Study of Tautomeric Equilibrium, the Stability, Polarizability, HOMO-LUMO Analysis and Acidity of 4,4-diméthyl-3,4-dihydroquinolin-2(1H)-one Derivatives
To cite this article
Lucie Affoue Bede, Benjamine Amon Assoma, Latyfatou Laye Alao, Denis Kicho Yapo, Soleymane Kone, Theoretical Study of Tautomeric Equilibrium, the Stability, Polarizability, HOMO-LUMO Analysis and Acidity of 4,4-diméthyl-3,4-dihydroquinolin-2(1H)-one Derivatives, International Journal of Computational and Theoretical Chemistry. Vol. 7, No. 2, 2019, pp. 107-114. doi: 10.11648/j.ijctc.20190702.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
L. M. Nainwal, S. Tasneem, W. Akhtar, G. Verma, M. F. Khan, S. Parvez, M. Shaquiquzzaman, M. Akhter and M. M. Alam, Eur. J. Med. Chem., 2019, 164, 121-170.
[2]
H. S. Soor, S. D. Appavoo and A. K. Yudin, Bioorg. Med. Chem., 2019, 26, 10, 2774-2779.
[3]
A. Detsi, D. Bouloumbasi, K. C. Prousis, M. Koufaki, Athanasellis G., Melagraki G., A. Afantitis, O. Igglessi-Markopoulou, C. Kontogiorgis and D. J. Hadjipavlou-Litina, J. Med. Chem., 2007, 50, 2450-2458.
[4]
M. Akranth, O. P. Tanwar, R. Saha, A. M. Rahmat, S. Srivastava, M. Akhter, M. Shaquiquzzaman and M. M. Alam, Saudi Pharm. J., 2013, 21, 1, 1-12.
[5]
K. Kaur, M. Jain, R. P. Reddy and R. Jain, Eur. J. Med. Chem., 2010, 45, 8, 3245-3264.
[6]
M. C. Mandewale, U. C. Patil, S. V. Shedge, U. R. Dappadwad, R. S. Yamgar, / Beni-Suef Univ. J. Basic Appl. Sci., 2017, 6, 4, 354-361.
[7]
T. G. Shruthi, S. Eswaran, P. Shivarudraiah, S. Narayanan and S. Subramanian, Bioorg. Med. Chem. Lett., 2019, 29, 1, 97-102.
[8]
P. Tenga, C. Lib, Z. Pengb, A. M. Vanderschouw, A. Nimmagadda, M. Su, Y. Li, J. X. S. Cai, Bioorg. Med. Chem., 2018, 26, 12, 3573-3579.
[9]
J. Zhang, W. Su, Y. Ba and Z. Xu, Eur. J. Med. Chem., 2019, 174, 1-8.
[10]
F. Saccoliti, V. N. Madia, V. Tudino, A. De Leo, L. Pescatori, A. Messore, D. De Vita, L. Scipione, R. Brun, M. Kaiser, P. Mäser, C. M. Calvet, G. K. Jennings, L. M. Podust, R. Costi, R. Di Santo, Eur. J. Med. Chem., 2018, 2018, 156, 53-60.
[11]
O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi and S. Bawa, Eur. J. Med. Chem., 2015, 97, 871-910.
[12]
A. H. Abadi, G. H. Hegazy and A. A E. Zaher, Bioorg. Med. Chem., 2005, 13, 5759-5765.
[13]
A. L. Bédé., A. B. Assoma, K. D. Yapo, M. G. R. Koné, S. Koné, M. Koné, B. R. N’Guessan and E. H. S. Bamba, Computational Chemistry, 2018, 6, 57-70.
[14]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, and al. Gaussian Inc. Pittsburgh. 2003.
[15]
A. D. Becke, J. Chem. Phys.1993, 98, 7, 5648-5652.
[16]
Sébastien Bouclé; Synthèse D’analogues d’Alcaloïdes Marins à Potentiel Anti-Tumoral. Thèse de Doctorat, Université Francois-Rabelais de Tours, 3 Décembre 2010. http://www.applis.univ-tours.fr/theses/2010/sebastien.boucle_3490.pdf
[17]
C. Gonzalez and H. B. Schlegel, Journal of Physical Chemistry, 1990, 94, 14, 5523-5527.
[18]
H. Eyring, Chemical Reviews, 1935, 17, 1, 65-77.
[19]
A. D. Boese and J. Sauer, Cryst. Growth Des., 2017, 17, 4, 1636-1646.
[20]
A. L. Bédé, A. B. Assoma, E. H. S. Bamba, M. Dan and I. Humelnicu, J. Mater. Phys. Chem., 2018, 6, 1, 17-22.
[21]
Y. Minenkov and L. Cavallo, ACS Omega, 2017, 2, 11, 8373-8387.
[22]
G. S. Kurkcuoğlu, E. Sayın, K. Gor, T. Arslan and O. Buyukgungor, Vibritional Spectroscopy, 2014, 71, 105.
[23]
E. Temel, C. Alasalvar, H. Gokce, A. Guder, C. Albayrak, Y. A. Bingol, Alpaslan G and N. Dilek, Spectrochim. Acta, Part A, 2015, 136, 534-546.
[24]
U. Ceylan, G. O. Tarı, H. Gokce and E. Ağar, J. Mol. Struct., 2016, 1110, 1-10.
[25]
T. Rajamani, and S. Muthu, Solid State Sci., 2013, 16, 90-101.
[26]
A. Jun-ichi, J. Phys. Chem. A, 1999, 103 (37), 7487-7495.
[27]
J. L. Gazquez, A. Cedillo and A. Vela, J. Phys. Chem. A, 2007, 111, 1966–1970.
[28]
K. Harrath, S. Boughdiri, R. Linguerri and M. Hochlaf, Theor. Chem. Acc., 2016, 2, 135-144.
[29]
R. K. Roy, S. Pal and K. Hirao, J. Chem. Phys., 1999, 110, 17, 8236-8245.
[30]
I. A. Topol, G. J. Tawa, S. K. Burt and A. A. Rashin, J. Phys. Chem. A, 1997, 101, 51, 10075-10081.
[31]
M. Remko, J. Phys. Chem. A, 2003, 107 (5), 720-725.
[32]
J. A. Keith and E. A. Carter, J. Chem. Theory Comput., 2012, 8, 9, 3187-3206.
[33]
M. Remko and C. W. von der Lieth, Bioorg. Med. Chem., 2004, 12, 20, 5395-5403.
[34]
R. Vianello and Z. B. Maksić, Tetrahedron Lett., 2005, 46, 21, 3711-3713.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186