Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases
International Journal of Computational and Theoretical Chemistry
Volume 7, Issue 1, June 2019, Pages: 49-55
Received: Jan. 31, 2019; Accepted: Mar. 15, 2019; Published: Apr. 3, 2019
Views 143      Downloads 61
Authors
Assoma Amon Benjamine, Training and Research Unit of Sciences of Structures of Matter and Technology (UFR SSMT), Félix Houphouët-Boigny University, Abidjan, Côte-d'Ivoire
Koné Mawa, Training and Research Unit of Sciences of Structures of Matter and Technology (UFR SSMT), Félix Houphouët-Boigny University, Abidjan, Côte-d'Ivoire
Alao Latifatou Laye, Training and Research Unit of Sciences of Structures of Matter and Technology (UFR SSMT), Félix Houphouët-Boigny University, Abidjan, Côte-d'Ivoire
Bede Affoué Lucie, Training and Research Unit of Sciences of Structures of Matter and Technology (UFR SSMT), Félix Houphouët-Boigny University, Abidjan, Côte-d'Ivoire
Koné Soleymane, Training and Research Unit of Sciences of Structures of Matter and Technology (UFR SSMT), Félix Houphouët-Boigny University, Abidjan, Côte-d'Ivoire
N’Guessan Boka Robert, Training and Research Unit of Sciences of Structures of Matter and Technology (UFR SSMT), Félix Houphouët-Boigny University, Abidjan, Côte-d'Ivoire
Bamba El Hadji Sawaliho, Training and Research Unit of Sciences of Structures of Matter and Technology (UFR SSMT), Félix Houphouët-Boigny University, Abidjan, Côte-d'Ivoire
N’guessan Yao Thomas, Training and Research Unit of Sciences of Structures of Matter and Technology (UFR SSMT), Félix Houphouët-Boigny University, Abidjan, Côte-d'Ivoire
Article Tools
Follow on us
Abstract
This work is a contribution of theoretical chemistry to the knowledge of 2‑thioxanthine's properties. Its aim first consists in checking the chemistry's results related to the exploitation of semi-empirical methods; it provides theoretical data on the acidity of 2‑thioxanthine tautomers. To do this, the DFT method with the B3LYP functional, associated with the 6‑311+G(d, p) basis set was used. The aqueous phase was modelled with the Polarizable Continuum Model (PCM). The results show that in gas and aqueous phases 2‑thioxanthine can exist as a mixture of four tautomers 2TX(1,3,7), 2TXX(1,3,9), 2TX(1,7,10) and 2TX(1,9,10). The relative stability decreases in the order 2TX(1,3,7)> 2TX(1,3,9)> 2TX(1,9,10)> 2TX(1,7,10). This work establishes that the tautomer 2TX(1,9,10) comes from the 2TX(1,3,7) via the 2TX(1,3,9) one. It demonstrates that the acidity of the most stable tautomer’s nitrogen 2TX(1,3,7), decreases in the order 7> 3> 1 in gas phase and in the order 3> 7>1 in aqueous phase. It provides data to elucidate the mechanisms to understand biological activities of 2‑thioxanthine.
Keywords
2-Thioxanthine, Stability, Tautomerism, Acidity, B3LYP
To cite this article
Assoma Amon Benjamine, Koné Mawa, Alao Latifatou Laye, Bede Affoué Lucie, Koné Soleymane, N’Guessan Boka Robert, Bamba El Hadji Sawaliho, N’guessan Yao Thomas, Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases, International Journal of Computational and Theoretical Chemistry. Vol. 7, No. 1, 2019, pp. 49-55. doi: 10.11648/j.ijctc.20190701.17
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
J. Carbon, H. David, M. H. Studier, Science 1968, 161, 1146.
[2]
W. J. Burrows, D. J. Armstrong, F. Skoog, S. M. Hecht, J. T. A. Boyle, N. J. Leonard, J. Occolowitz, Science 1968, 161, 691.
[3]
M. Ono, M. Kawakami, J. Biochem. 1977, 81, 1247.
[4]
W. Saenge, Soringer, New York, 1984.
[5]
S. E. kalyoubi, F. Agili, S. Youssif, Molecules 2015, 20, 19263–19276.
[6]
A. Biela1, F. Coste, F. Culard, M. Guerin, S. Goffinont, K. Gasteiger, J. Ciesla, A. Winczura, Z. Kazimierczuk, D. Gasparutto, T. Carell, B. Tudek, B. Castaing, Nucleic Acids Res. 2014, 1–14.
[7]
S. L. Maiocchi, J. C. Morris, M. D. Rees, S. R. Thomas, Biochemical Pharmacology 2017, 135, 90–115.
[8]
C. J. Weeramange, C. M. Binns, Ch. Chenc, R. J. Rafferty, Journal of Pharmaceutical and Biomedical Analysis 2018, 151, 106–115.
[9]
K. Pavelcova, L. Petru, J. Krijt, Toxicology and Applied Pharmacology 2018, 353, 102-108.
[10]
S. Deswal, A. Srivastava, Journal of Clinical and Experimental Hepatology 2017, 7(1), 55-62.
[11]
Z. Wang, T. M. Rana, Biochemistry 1996, 32, 6491–6499.
[12]
D. J. Darensbourg, B. J. Frost, K. A. Derecskei, J. H. Reibenspies, Inorg. Chem. 1999, 38, 4715–4723.
[13]
A. Dafali, B. Hammouti, R. Mokhlisse, S. Kertit, Corrosion Sci. 2003, 45, 1619–1630.
[14]
O. H. Nielsen, B. Vainer, M. J. Rask, Aliment. Pharmacol. Ther 2001, 15, 1699–1708.
[15]
C. E. Neunert, G. R. Buchanan, Pediatr. Blood. Cancer. 2009, 52, 5–6.
[16]
M. Raj, R. N. Goyal Sensors and Actuators B 250 2017, 552–562.
[17]
E. Kafer Mutation Research. 1975, 31, 347-64.
[18]
Scott BR, Kafer E, Dom GL, et al. Mutation Research. 1982; 98: 49-94.
[19]
H. G. Mautner, G. Bergson, Acta. Chem. Scand. 1963, 17, 1694.
[20]
L. M. Twanmoh Jr., H. B. Wood, J. S. Driscoll, J. Heterocycl. Chem. 1973, 10, 187.
[21]
P. U. Civcir. Journal of Molecular Structure (Theochem) 2001; 546, 163-73.
[22]
P. U. Civcir. Journal of Molecular Structure (Theochem) 2001; 114, 1582-88.
[23]
P. U. Civcir. Journal of Molecular Structure (Theochem) 2001; 572, 5-13.
[24]
P. U. Civcir, Journal of Molecular Structure-(Theochem) 2001; 545, 7-15.
[25]
P. U. Civcir, Journal of Molecular Structure (Theochem) 2001; 536, 161-171.
[26]
B. Z. Li, Acta. Phys. Chim. Sin. 2004, 20, 1455–1458.
[27]
A. B. Assoma, A. L Bede, M. Kone et al. European Journal of Scientific Research. 2010, 44, 2, 337-354
[28]
A. B. Assoma, A. L. Bede, K. D. YAPO et al, European Journal of Scientific Research. 2018; 149, 2, 148-152.
[29]
BA Assoma, LA Bede, RB N’Guessan, S Kone, SE Bamba and TY N’Guessan, J Curr Chem Pharm Sc. 2018; 8(2):114.
[30]
A. D. Becke The Journal of Chemical Physics. 1997, 107, 8554-60.
[31]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian Inc. Pittsburgh. 2003.
[32]
J. Tomasi, M. Persico Chemical Reviews. 1994, 94, 2027-94.
[33]
E. Canses, B. Mennucci, J. Tomasi, The Journal of Chemical Physics. 1997, 107, 3032-41.
[34]
P. G. Mezey, J. J. Ladik, Theor Chim Acta. 1979; 52: 129.
[35]
P. G. Mezey, J. J. Ladik,, M. Barry, Theor Chim Acta. 1979; 54: 251.
[36]
M. Remko, J Phys Chem A. 2003, 107, 720-25.
[37]
K. N. Rogstad, Y. H. Jang, L. C. Sowers and W. A. Goddard, Chem. Res. Toxicol. 2003, 16, 1455-1462
[38]
Y. H. Jang, W. A Goddard, K. T. Noyes, L. C. Sowers, S. Hwang and D. S. Chung, J. Phys. Chem. B 2003, 107, 344-357.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186