Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au)
International Journal of Computational and Theoretical Chemistry
Volume 4, Issue 3, November 2016, Pages: 21-30
Received: Nov. 29, 2016; Accepted: Dec. 8, 2016; Published: Jan. 10, 2017
Views 2560      Downloads 120
Authors
Tetsuya Ohkawa, Department of Electrical Engineering and Computer Sciences, University of Hyogo, Himeji, Hyogo, Japan
Kei Kuramoto, Department of Electrical Engineering and Computer Sciences, University of Hyogo, Himeji, Hyogo, Japan
Article Tools
Follow on us
Abstract
We have investigated the CH4 adsorption and the C-H bond breaking activation on the metal ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au) and M@M (111)/H (covered by hydrogen atoms) 3 and 1-layer surfaces (4-type surfaces) using spin-polarized Density Functional Theory (DFT). We find that the adsorption energies of methane are related to the d-band center of metal ad-atoms. In particular, the distances between CH4 and Ni, Pd, and Pt ad-atoms of 4-type surfaces are shortened and the adsorption energies of CH4 on metal ad-atoms are stronger than the perfect surfaces because the d-band center of metal ad-atoms are close to the Fermi level. Furthermore, we have investigated the activation barrier energies of C-H bond breaking of CH4 on Ni, Pt, and Ag ad-atoms of 4-type surfaces because Pt ad-atom exhibits stronger adsorption energy of CH4, Ag ad-atom exhibits weaker ones, and Ni utilizes for the steam reforming reaction. We find that Ni and Pt ad-atoms show lower activation barrier energies, and they are related to the CH4 adsorption energies as well as the d-band centers.
Keywords
Methane Adsorption, C-H Bond Breaking, Ad-atom, Density Functional Theory
To cite this article
Tetsuya Ohkawa, Kei Kuramoto, Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au), International Journal of Computational and Theoretical Chemistry. Vol. 4, No. 3, 2016, pp. 21-30. doi: 10.11648/j.ijctc.20160403.12
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
J. R. Rostrup-Nielsen, J. H. B. Hansen, J. Catal. 144, 38 (1993).
[2]
M. C. J. Brandford, M. A. Vannice, Appl. Catal. A Gen. 142, 97 (1996).
[3]
K. Tomoshige, Y. G. Chen, K. Fujimoto, J. Catal. 181, 91 (1999).
[4]
K. Otsuka, S. Kobayashi, S. Takenaka, Appl. Catal. A Gen. 190, 261 (2000).
[5]
A. Erdöhelyi, J. Cserényi, F. Solymosi, J. Catal. 141, 287 (1993)
[6]
R. Takahashi, S. Sato, T. Sodesawa, M. Kato, S. Takenaka, S. Yoshida, J. Catal. 204, 259 (2001).
[7]
O. Tokunaga, Y. Osada, S. Ogasawara, Fuel 68, 990 (1989).
[8]
S. Tang, L. Li, J. Lin, H. C. Zeng, K. L. Tan, K. Li, J. Catal. 194, 424 (2000).
[9]
A. Malaika, B. Krzyzynska, M. Kozlowski, Int. J. Hydrogen Energy 35, 7470 (2010).
[10]
J. M. Ginsburg, J. Pina, T. E. Solh, H. I. de Lasa, Ind. Eng. Chem. Res. 44, 4846 (2005).
[11]
J. R. Rostrup-Nielsen, Catal. Today 37, 225 (1997).
[12]
V. C. H. Kroll, H. M. Swaan, C. Mirodatos, J. Catal. 161, 409 (1996).
[13]
H. M. Swaan, V. C. H. Kroll, G. A. Martin, C. Mirodatos, Catal. Today 21, 571 (1994).
[14]
H. F. Abbas, W. M. A. W. Daud, Int. J. Hydrogen Energy 35, 141 (2010).
[15]
C. H. Bartholomew, Appl. Catal. A Gen. 212, 17 (2001).
[16]
H. S. Bengaard, J. K. Nørskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, and J. R. Rostrup-Nielsen, J. Catal. 209, 365 (2002).
[17]
J. R. Rostrup-Nielsen, Springer, Berlin (1984) (editor: J. R. Anderson, M. Boudart).
[18]
C. T. Rettner, H. E. Pfnur, and D. J. Auerbach, Phys. Rev. Lett. 54, 2716 (1985).
[19]
C. T. Rettner, H. E. Pfnur, and D. J. Auerbach, J. Chem. Phys. 84, 4163 (1986).
[20]
P. M. Holmblad, J. Wambach and I. Chorkendorff, J. Chem. Phys. 102, 8255 (1995).
[21]
L. B. F. Juurlink, P. R. McCabe, R. R. Smith, C. L. DiCologero, and A. L. Utz, Phys. Rev. Lett. 83, 868 (1999).
[22]
M. B. Lee, Q. Y. Yang, and S. T. Ceyer, J. Chem. Phys. 87, 2724 (1987).
[23]
R. R. Smith, D. R. Killelea, D. F. DelSesto, and A. L. Utz, Science, 304, 992 (2004).
[24]
R. Bisson, M. Sacchi, T. T. Dang, B. Yoder, P. Maroni, and R. D. Beck, J. Phys. Chem. A, 111, 12679 (2007).
[25]
H. Yang and J. L. Whitten, J. Chem. Phys. 96, 5529 (1992).
[26]
P. Kratzer, B. Hammer, and J. K. Nørskov, J. Chem. Phys. 105, 5595 (1996).
[27]
S. Nave, A. K. Tiwari, and B. Jackson, J. Chem. Phys. 132, 054705 (2010).
[28]
T. P. Beebe Jr., D. W. Goodman, B. D. Kay, and J. T. Yates Jr., J. Chem. Phys. 87, 2305 (1987).
[29]
F. Abild-Pedersen, O. Lytken, J. Engbæk, G. Nielsen, I. Chorkendorff, and J. K. Nørskov, Surf. Sci. 590, 127 (2005).
[30]
A. Kokaji, N. Bonini, S. de Gironcoli, C. Sbraccia, G. Fratesi, and S. Baroni, J. Am. Chem. Soc. 128, 12448 (2006).
[31]
P. L. Rodríguez-Kessler and A. R. Rodríguez-Domínguez, J. Phys. Chem. C 119, 12378 (2015).
[32]
S. Yuan, L. Meng, and J. Wang, J. Phys. Chem. C 117, 14796 (2013).
[33]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys.: Condens. Matter, 21, 395502 (2009).
[34]
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[35]
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[36]
G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).
[37]
V. Shah, T. Li, K. L. Baumert, H. Cheng, and D. S. Sholl, Surf. Sci. 527, 217-227 (2003).
[38]
S. G. Wang, X. Y. Liao, J. Hu, D. B. Cao, Y. W. Li, J. Wang, and H. Jiao, Surf. Sci. 601, 1271 (2007).
[39]
H. Liu, R. Zhang, R. Yan, B. Wang, and K. Xie, Appl. Surf. Sci. 257, 8955 (2011).
[40]
R. Zhang, T. Duan, L. Ling, and B. Wang, Appl. Surf. Sci. 341, 100 (2015).
[41]
S. G. Wang, D. B. Cao, Y. W. Li, J. G. Wang, and H. J. Jiao, J. Phys. Chem. B 110, 9976 (2006).
[42]
G. Gajewski and C. W. Pao, J. Chem. Phys. 135, 064707 (2011).
[43]
K. Li, C. He, M. Jiao, Y. Wang, and Z. Wu, CARBON, 74, 255 (2014).
[44]
K. Li, M. Jiao, Y. Wang, and Z. Wu, Surf. Sci. 617, 149 (2013).
[45]
B. Hammer and J. K. Nørskov, Surf. Sci. 343, 211 (1995).
[46]
B. Hammer, Top. Catal. 37, 3 (2006).
[47]
V. Pallassana and M. Neurock, J. Catal. 191, 301 (2000).
[48]
J. Ding, Z. Qiao, W. Feng, Y. Yao, and Q. Niu, Phys. Rev. B 84, 195444 (2011).
[49]
R. M. Watwe, H. S. Bengaard, J. R. Rostrup-Nielsen, J. A. Dumesic, and J. K. Nørskov, J. Catal. 189, 16 (2000).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186