Molecular and Ionic Clusters of Rubidium Fluoride: Theoretical Study of Structure and Vibrational Spectra
International Journal of Computational and Theoretical Chemistry
Volume 3, Issue 5, September 2015, Pages: 34-44
Received: Sep. 15, 2015; Accepted: Sep. 24, 2015; Published: Oct. 19, 2015
Views 3429      Downloads 117
Authors
Ismail Abubakari, The Nelson Mandela African Institution of Science and Technology (NM – AIST), Arusha, Tanzania; Dept. of Materials, Energy Science and Engineering, The NM - AIST, Arusha, Tanzania
Tatiana Pogrebnaya, The Nelson Mandela African Institution of Science and Technology (NM – AIST), Arusha, Tanzania; Dept. of Materials, Energy Science and Engineering, The NM - AIST, Arusha, Tanzania
Alexander Pogrebnoi, The Nelson Mandela African Institution of Science and Technology (NM – AIST), Arusha, Tanzania; Dept. of Materials, Energy Science and Engineering, The NM - AIST, Arusha, Tanzania
Article Tools
Follow on us
Abstract
In this study, the geometrical structure and vibrational spectra of the trimer molecule Rb3F3 and ionic clusters Rb2F+, RbF2-, Rb3F2+, and Rb2F3- were studied by density functional theory (DFT) with hybrid functional B3P86 and Møller–Plesset perturbation theory of second order (MP2). The effective core potential with Def2–TZVP (6s4p3d) basis set for rubidium atom and aug–cc–pVTZ (5s4p3d2f) basis set for fluorine atom were used. The triatomic ions have a linear equilibrium geometric structure of D∞h symmetry, whereas for pentaatomic ions Rb3F2+, RbF3- and trimer molecule Rb3F3 different isomers have been revealed. For the ions Rb3F2+, Rb2F3- three isomers were confirmed to be equilibrium; the linear (D∞h ), the planar cyclic (C2v ) and the bipyramidal (D3h ) while for trimer Rb3F3, two isomers were found; the hexagonal (D3h ) and the “butterfly-shaped” (C2v ) configuration.
Keywords
Geometrical Structure, Vibrational Spetra, Ionic Clusters, Hybrid Functional, Density Functional Theory, Møller–Plesset Perturbation Theory, Effective Core Potential, Isomers, Basis Set
To cite this article
Ismail Abubakari, Tatiana Pogrebnaya, Alexander Pogrebnoi, Molecular and Ionic Clusters of Rubidium Fluoride: Theoretical Study of Structure and Vibrational Spectra, International Journal of Computational and Theoretical Chemistry. Vol. 3, No. 5, 2015, pp. 34-44. doi: 10.11648/j.ijctc.20150305.11
References
[1]
Cramer, C. J. (2004), Essentials of computational chemistry: theories and models. John Wiley & Sons Ltd, 2nd Ed, USA.
[2]
Khanna, S. and Jena P., Atomic clusters: Building blocks for a class of solids. Phys. Rev. B. 1995. 51(19): p. 13705.
[3]
Khanna, S. and Jena P., Assembling crystals from clusters. Phys. Rev. lett. 1993. 71(1): p. 208.
[4]
Rao, B., Khanna, S., & Jena, P., Designing new materials using atomic clusters. J. Cluster Sci. 1999. 10(4), 477-491.
[5]
Sarkas, H. W., Kidder, L. H., and Bowen, K. H., Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals. J. Chem. Phys. 1995. 102(1): p. 57-66.
[6]
Alexandrova, A. N., Boldyrev, A. I., Fu, Y.-J., Yang, X., Wang, X.-B., & Wang, L.-S, Structure of the NaxClx+1 (x= 1–4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. J. Chem. Phys. 2004. 121(12): p. 5709-5719.
[7]
Castleman, A. and Bowen K., Clusters: Structure, energetics, and dynamics of intermediate states of matter. J. Phys. Chem. 1996. 100(31): p. 12911-12944.
[8]
Castleman Jr, A., and Khanna, S., Clusters, Superatoms, and Building Blocks of New Materials. J. Phys. Chem. 2009. 113(7): p. 2664-2675.
[9]
Pogrebnoi, A. M., Pogrebnaya, T. P., Kudin, L. S., & Tuyizere, S., Structure and thermodynamic properties of positive and negative cluster ions in saturated vapour over barium dichloride. Mol. Phys. 2013. 111(21): p. 3234-3245.
[10]
Hishamunda, J., Girabawe, C., Pogrebnaya, T., & Pogrebnoi, A., Theoretical study of properties of Cs2Cl+, CsCl2, Cs3Cl2+, and Cs2Cl3 ions: Effect of Basis set and Computation Method. Rwanda. Jornal. 2012. 25(1): p. 66-85.
[11]
Fernandez-Lima, F. A., Nascimento, M. A. C., and da Silveira, E. F., Alkali halide clusters produced by fast ion impact. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012. 273: p. 102-104.
[12]
Huh, S., and Lee G., Mass spectrometric study of negative, positive, and mixed KI cluster ions by using fast Xe atom bombardment. J. Kor. Phys. Soc. 2001. 38(2): p. 107-110.
[13]
Aguado, A., An ab initio study of the structures and relative stabilities of doubly charged [(NaCl)m(Na) 2]2+ cluster ions. J. Phys. Chem. B, 2001. 105(14): p. 2761-2765.
[14]
Mwanga, S. F., Pogrebnaya T. P., and Pogrebnoi, A. M., Structure and properties of molecular and ionic clusters in vapour over caesium fluoride. Mol. Phys. 2015. p.1-16.
[15]
Costa, R., Pogrebnaya, T., and Pogrebnoi, A., Structure and vibrational spectra of cluster ions over rubidium iodide by computational chemistry. Pan African Conference on Computing and Telecommunications in Science (PACT). IEEE. 2014. PACTAT01114: pp. 5255; doi: 10.1109/SCAT.2014.7055136.
[16]
Chupka, W. A., Dissociation energies of some gaseous alkali halide complex ions and the hydrated ion K(H2O) +. J. Chem. Phys. 1959. 30(2): p. 458-465.
[17]
Kudin, L., Burdukovskaya, G., Krasnov, K., & Vorob'ev, O., Mass spectrometric study of the ionic composition of saturated potassium chloride vapour. Enthalpies of formation of the K2Cl+, K3Cl2+, KCl2, and K2Cl3 ions. Russ. J. Phys. Chem. 1990. 64: p. 484-489.
[18]
Pogrebnoi, A., Kudin, L., Motalov, V., & Goryushkin, V., Vapor species over cerium and samarium trichlorides, enthalpies of formation of (LnCl3)n molecules and Cl−(LnCl3)n ions. Rapid Communications in Mass Spectrometry, 2001. 15(18): p. 1662-1671.
[19]
Dunaev, A., Kudin, L., Butman, M. F., & Motalov, V., Alkali Halide Work Function Determination by Knudsen Effusion Mass Spectrometry. ECS Transactions, 2013. 46(1): p. 251-258.
[20]
Gusarov, A., Equilibrium ionization in vapors of inorganic compounds and the thermodynamic properties of ions. Chemical sciences doctoral dissertation, Moscow, 1986.
[21]
Sidorova, I., Gusarov, A., and Gorokhov, L., Ion—molecule equilibria in the vapors over cesium iodide and sodium fluoride. Intern. J. Mass Spec. Ion Phys. 1979. 31(4): p. 367-372.
[22]
Pogrebnoi, A., Kudin, L., and Kuznetzov, A.Y., Enthalpies of formation of ions in saturated vapor over Cesium Chloride. Russ. J. Phys. Chem. 2000. 74(10): p. 1728-1730.
[23]
Motalov, V., Pogrebnoi, A., and Kudin, L., Molecular and ionic associates in vapor over rubidium chloride. Russ. J. Phys. Chem. C/C of Zhurnal Fizicheskoi Khimii, 2001. 75(9): p. 1407-1412.
[24]
A. M. Pogrebnoi, L. S. Kudin, G. G. Burdukovskaya, Mass spectrometric investigation of ion molecular equilibria in vapours over RbI, AgI and RbAg4I5. Russ. Teplofisika vysokikh temperatur. 1992. vol. 29, pp. 907-915.
[25]
Pogrebnaya, T. P., Hishamunda, J. B., Girabawe, C., & Pogrebnoi, A. M., Theoretical study of structure, vibration spectra and thermodynamic properties of cluster ions in vapors over potassium, rubidium and cesium chlorides, in Chemistry for Sustainable Development. 2012, Springer. p. 353-366.
[26]
Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): p. 5648-5652.
[27]
Perdew, J. P., and Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 1981. 23(10): p. 5048.
[28]
Perdew, J., P hys. Rev. B 1986, 33, 8822–8824; c) JP Perdew. Phys. Rev. B, 1986. 34: p. 7406-7406.
[29]
Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 1986. 33(12): p. 8822.
[30]
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993; 14:1347-1363; doi: 10.1002/jcc. 540141112.
[31]
Granovsky, A. A. Firefly version 8.1.0, www http://classic.chem.msu.su/gran/firefly/index.html
[32]
EMSL basis set exchange website: https://bse.pnl.gov/bse/portal.
[33]
Leininger, T., Nicklass, A., Küchle, W., Stoll, H., Dolg, M., & Bergner, A., The accuracy of the pseudopotential approximation: Non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X= K, Rb, Cs). Chem. Phys. Lett. 1996. 255(4): p. 274-280.
[34]
Kendall, R. A., Dunning Jr, T. H., and Harrison, R. J., Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992. 96(9): p. 6796-6806.
[35]
Feller, D., The role of databases in support of computational chemistry calculations. J. Comp. Chem. 1996. 17(13): p. 1571-1586.
[36]
Schuchardt, K. L., Didier, B. T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., and Windus, T. L., Basis set exchange: a community database for computational sciences. J. Chem. Info. Mod. 2007. 47(3): p. 1045-1052.
[37]
Chemcraft. Version 1.7 (build 132). G. A. Zhurko, D. A. Zhurko. HTML: www.chemcraftprog.com.
[38]
Bode, B. M., and Gordon, M. S., MacMolPlt version 7.4.2. J. Mol. Graphics and Modeling, 1998; 16,133‒138: http://www.scl.ameslab.gov/MacMolPlt/.
[39]
Tokarev, K. L. "OpenThermo", v.1.0 Beta 1 (C) ed. http://openthermo.software.informer.com/, 2007-2009.
[40]
Huber, K., and Herzberg, G., Spectroscopic constants of diatomic molecules. Van Nostrana, Princeton, NJ, 1979: p. 887-897.
[41]
Baikov, V., and Vasilevskii, K., Infrared Spectra of Sodium, Potassium, Rubidium, and Cesium Fluoride Vapors. Optics and Spectroscopy, 1967. 22: p. 198.
[42]
Veazey, S., and Gordy, W., Millimeter-wave molecular-beam spectroscopy: Alkali fluorides. Physical Review, 1965. 138(5A): p. A1303.
[43]
Hebert, A., Lovas, F., Melendres, C., Hollowell, C., Story Jr, T., & Street Jr, K., Dipole moments of some alkali halide molecules by the molecular beam electric resonance method. J. Chem. Phys. 1968. 48(6): p. 2824.
[44]
Hargittai, M., Molecular structure of metal halides. Chem. Rev. 2000. 100(6): p. 2233-2302.
[45]
Ault B. S., Andrews L., Amer, J., Chem. Soc. 1976. V. 98, p. 1591
[46]
L. V. Gurvich, V. S. Yungman, G. A. Bergman, I. V. Veitz, A. V. Gusarov, V. S. Iorish, V. Y. Leonidov, V. A. Medvedev, G. V. Belov, N. M. Aristova, L. N. Gorokhov, O. V. Dorofeeva, Y. S. Ezhov, M. E. Efimov, N. S. Krivosheya, I. I. Nazarenko, E. L. Osina, V. G. Ryabova, P. I. Tolmach, N. E. Chandamirova, E. A. Shenyavskaya, Thermodynamic Properties of individual Substances. Ivtanthermo for Windows Database on Thermodynamic Properties of Individual Substances and Thermodynamic Modeling Software. Version 3.0 (Glushko Thermocenter of RAS, Moscow, 1992-2000).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186