Effect of Different Shape of Periodic Forces on Chaotic Oscillation in Brusselator Chemical System
International Journal of Computational and Theoretical Chemistry
Volume 3, Issue 3, May 2015, Pages: 19-27
Received: May 20, 2015; Accepted: Jun. 6, 2015; Published: Jun. 23, 2015
Views 3671      Downloads 111
Authors
Guruparan S., Department of Chemistry, Sri K. G. S Arts College, Srivaikuntam, Tamilnadu, India
Ravindran Durai Nayagam B., Department of Chemistry, Pope’s College, Sawyerpuram, Tamilnadu, India
Jeyakumari S., Department of Physics, Sri K. G. S Arts College, Srivaikuntam, Tamilnadu, India
Chinnathambi V., Department of Physics, Sri K. G. S Arts College, Srivaikuntam, Tamilnadu, India
Article Tools
Follow on us
Abstract
Bifurcations of periodic orbits and chaos in the Brusselator chemical reaction with different shape of external periodic forces are studied numerically. The external periodic forces considered are sine wave, square-wave, rectified sine wave, symmetric saw-tooth wave, asymmetric saw-tooth wave and modulus of sine wave. Period doubling bifurcations, chaos, reverse period doubling bifurcations, quasiperiodic bifurcations are found to occur due to the applied forces. Parametric regimes where suppression of chaos occurs are predicted. Numerical investigations including bifurcation diagram, maximal Lyapunov exponent, Poincare map, Phase portrait and time series plot are used to detect chaos, quasiperiodic and periodic orbits.
Keywords
Brusselator, Various Periodic Forces, Bifurcations, Chaos, Quasiperiodic Orbit
To cite this article
Guruparan S., Ravindran Durai Nayagam B., Jeyakumari S., Chinnathambi V., Effect of Different Shape of Periodic Forces on Chaotic Oscillation in Brusselator Chemical System, International Journal of Computational and Theoretical Chemistry. Vol. 3, No. 3, 2015, pp. 19-27. doi: 10.11648/j.ijctc.20150303.11
References
[1]
R. J. Field and M. Burger, Oscillations and Travelling waves in Chemical Systems, Wiley- Interscience, New York, 1985.
[2]
P. Gray and S.K. Scott, Chemical Oscillations, Instabilities: Nonlinear Chemical Kinetics, Oxford University Press, Oxford, 1900.
[3]
S.K. Scott, Chemical Chaos, Oxford University Press, Oxford, 1991.
[4]
S.K. Scott, Oscillations, Waves and Chaos in Chemical Kinetics, Oxford University Press, Oxford, 1994.
[5]
E. Ott, Chaos in Dynamical Systems, Cambridge University Press, Cambridge, 1993.
[6]
J. Shi, Front. Math. China, 43, 407 (2009).
[7]
J. Wang, H. Sun, S.K. Scott and K. Showalter, Phys. Chem. Chem. Phy., 5, 5444 (2003).
[8]
I.R. Epstein and K. Showalter, J. Phys. Chem., 100, 13132 (1996).
[9]
J. Tyson, J. Chem. Phys., 58, 3919 (1973).
[10]
R. Lefever and G. Nicolis, J. Theor. Biol., 30, 267 (1971).
[11]
J.C. Roux, A. Russi, S. Bachelart and C. Vidal, Phys. Lett. A, 77, 391 (1980).
[12]
R.H.. Simoyi, A. Wolf and H.L. Swinney, Phys. Rev. Lett., 49, 245 (1982).
[13]
J. Turner, J.C. Roux, W.D. McCormick and H.L. Swnney, Phys. Lett. A, 85, 9 (1981).
[14]
J. L. Hudson, M. Hart and J. Marinko, J. Chem. Phys., 71, 1601 (1979).
[15]
R. A. Schmitz, K. R. Graziani and J.L. Hudson, J. Chem. Phys., 67, 3040 (1977).
[16]
I.Yamazaki, K. okota, and R. Nakajima, Biochem. Biophys. Res. Commun., 21, 582 (1965).
[17]
S. Nakamura, K. Yokota and I.Yamazaki, Nature, 222, 794 (1969).
[18]
C.G. Steinmetz, T. Geest and R. Larter, J. Phys. Chem., 97, 5649 (1993).
[19]
L.F. Olsen and H. Degn, Nature, 267, 177 (1977).
[20]
T. Geest, C.G. Steinmetz, R. Larter and L.F. Olsen, J. Phys. Chem., 96, 5678 (1992).
[21]
M.S. Samples, H.F. Hung and J. Ross, J. Phys. Chem., 96, 7338 (1992).
[22]
J. Maselko and I.R. Epstein, J. Chem. Phys., 80, 3175 (1984).
[23]
E. Wasserman, Chem. Eng. News, 69, 25 (1991).
[24]
P. Ruoff, J. Phys. Chem., 96, 9104 (1992).
[25]
J. Wang, P. G. Sorensen and F. Hynne, J. Phys. Chem., 98, 725 (1994).
[26]
F.N. Albahadily and M. Schell, J. Phys. Chem., 88, 4312 (1988).
[27]
M.R. Bassett and J.L. Hudson, Chem. Eng. Commun., 60, 145 (1987).
[28]
M.R. Bassett and J.L. Hudson, J. Phys. Chem., 92, 6963 (1988).
[29]
M.R. Bassett and J.L. Hudson, J. Phys. Chem., 93, 2731 (1989).
[30]
M. Schell, F.N. Albahadily, J. Safar and Y. Xu, J. Phys. Chem., 93, 4806 (1989).
[31]
F.N. Albahadily and M. Schell, J. Electroanal Chem., 308, 151 (1991).
[32]
M.T.M. Koper and P. Gaspard, J. Phys. Chem., 95, 4945 (1991).
[33]
M.T.M. Koper and P. Gaspard, J. Phys. Chem., 96, 7797 (1992).
[34]
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 1990.
[35]
M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics, Integrability, Chaos and Patterns, Springer- Verlag, Berlin, 2003.
[36]
R. Chacon, J. Math. Phys., 38, 1477 (1997).
[37]
K. Konishi, Phys. Lett. A., 320, 200 (2003).
[38]
Z.M. Ge and W.Y. Leu, Chaos, Soliton and Fractals, 20, 503 (2004).
[39]
A.Y.T. Leung and L. Zengrong, Int. J. Bifur. and Chaos, 14, 1455 (2004).
[40]
V.M. Gandhimathi, K.Murali and S.Rajasekar, Chaos, Soliton and Fractals, 30, 1034 (2006).
[41]
V.M. Gandhimathi, S. Rajasekar and J. Kurths, Int. J. of Bifur. and Chaos, 18, 2073 (2008).
[42]
V. Ravichandran, V. Chinnathambi and S. Rajasekar, Indian J. of Phys., 86(10), 907 (2012).
[43]
V. Ravichandran, V. Chinnathambi and S. Rajasekar, Physica A, 376, 223 (2007).
[44]
T. Ma and S. Wang, J. of Math. Phys., 52, 033501 (2011).
[45]
M. Sun, Y. Tan and L. Chen, J. Math. Chem., 44, 637 (2008).
[46]
J. C. Tzou, B .J. Matkowsky and V.A. Volpert, Appl. Math. Lett., 22, 1432 (2009).
[47]
I. Prigogine and R. Lefever, J. Chem. Phys., 48, 1695 (1968).
[48]
I. Bashkirtseva and L. Ryashko, Chaos, Solitons and Fractals, 26, 1437 (2005).
[49]
A. Sanayei, Controlling Chaotic Forced Brusselator Chemical Reaction, Procedings of the World Congress in Engineering (WCE), Vol. III, June 30-July 2, 2010, London, UK.
[50]
A. Wolf, J.B. Swift, H.L. Swinny and J.A. Vastano, Physica D, 16, 285 (1985).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186