American Journal of Nano Research and Applications

| Peer-Reviewed |

Recent Advances in Self-Assembled DNA Nanosensors

Received: 30 November 2014    Accepted: 18 December 2014    Published: 27 December 2014
Views:       Downloads:

Share This Article

Abstract

Over the past 30 years DNA has been assembled into a plethora of structures by design, based on its reliable base pairing properties. As a result, many applications of DNA nanotechnology are emerging. Here, we review recent advances in the use of self-assembled DNA nanostructures as sensors. In particular, we focus on how defined nanostructures, such as rigid DNA tetrahedra, provide an advantage over traditional nanosensors consisting of arrays of single-stranded DNA. We also explore advances in DNA origami that have resulted in consistent detection of single molecules.

DOI 10.11648/j.nano.s.2015030101.11
Published in American Journal of Nano Research and Applications (Volume 3, Issue 1-1, January 2015)

This article belongs to the Special Issue Nanomaterials and Nanosensors for Chemical and Biological Detection

Page(s) 1-7
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Self-Assembly, DNA, Nanosensors, Tetrahedron, DNA Origami

References
[1] K.M. Carneiro, N. Avakyan, H.F. Sleiman, "Long-range assembly of DNA into nanofibers and highly ordered networks", Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2013, pp.
[2] J. Liu, Z. Cao, Y. Lu, "Functional nucleic acid sensors", Chemical Reviews, 109, 2009, pp. 1948-1998.
[3] K. Wang, Z. Tang, C.J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu, C.D. Medley, Z. Cao, J. Li, P. Colon, H. Lin, W. Tan, "Molecular engineering of DNA: Molecular beacons", Angewandte Chemie International Edition, 48, 2009, pp. 856-870.
[4] C. Tuerk, L. Gold, "Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase", Science, 249, 1990, pp. 505-510.
[5] S.D. Jayasena, "Aptamers: An emerging class of molecules that rival antibodies in diagnostics", Clinical Chemistry, 45, 1999, pp. 1628-1650.
[6] K. Robison, A.M. McGuire, G.M. Church, "A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete escherichia coli k-12 genome", Journal of Molecular Biology, 284, 1998, pp. 241-254.
[7] S. Tyagi, F.R. Kramer, "Molecular beacons: Probes that fluoresce upon hybridization", Nat Biotech, 14, 1996, pp. 303-308.
[8] R.P. Goodman, R.M. Berry, A.J. Turberfield, "The single-step synthesis of a DNA tetrahedron", Chemical Communications, 2004, pp. 1372-1373.
[9] J.-W. Keum, H. Bermudez, "Enhanced resistance of dnananostructures to enzymatic digestion", Chemical Communications, 2009, pp. 7036-7038.
[10] N. Mitchell, R. Schlapak, M. Kastner, D. Armitage, W. Chrzanowski, J. Riener, P. Hinterdorfer, A. Ebner, S. Howorka, "A DNA nanostructure for the functional assembly of chemical groups with tunable stoichiometry and defined nanoscale geometry", Angewandte Chemie International Edition, 48, 2009, pp. 525-527.
[11] M. Leitner, N. Mitchell, M. Kastner, R. Schlapak, H.J. Gruber, P. Hinterdorfer, S. Howorka, A. Ebner, "Single-molecule afm characterization of individual chemically tagged DNA tetrahedra", ACS Nano, 5, 2011, pp. 7048-7054.
[12] D.Y. Petrovykh, V. Pérez-Dieste, A. Opdahl, H. Kimura-Suda, J.M. Sullivan, M.J. Tarlov, F.J. Himpsel, L.J. Whitman, "Nucleobase orientation and ordering in films of single-stranded DNA on gold", Journal of the American Chemical Society, 128, 2005, pp. 2-3.
[13] H. Pei, X. Zuo, D. Pan, J. Shi, Q. Huang, C. Fan, "Scaffolded biosensors with designed DNA nanostructures", NPG Asia Mater, 5, 2013, pp. e51.
[14] H. Pei, N. Lu, Y. Wen, S. Song, Y. Liu, H. Yan, C. Fan, "A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing", Advanced Materials, 22, 2010, pp. 4754-4758.
[15] H. Pei, L. Liang, G. Yao, J. Li, Q. Huang, C. Fan, "Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors", Angewandte Chemie International Edition, 51, 2012, pp. 9020-9024.
[16] A. Abi, M. Lin, H. Pei, C. Fan, E.E. Ferapontova, X. Zuo, "Electrochemical switching with 3d DNA tetrahedral nanostructures self-assembled at gold electrodes", ACS Applied Materials & Interfaces, 6, 2014, pp. 8928-8931.
[17] L. Yuan, M. Giovanni, J. Xie, C. Fan, D.T. Leong, "Ultrasensitive igg quantification using DNA nano-pyramids", NPG Asia Mater, 6, 2014, pp. e112.
[18] X. Chen, G. Zhou, P. Song, J. Wang, J. Gao, J. Lu, C. Fan, X. Zuo, "Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold", Analytical Chemistry, 86, 2014, pp. 7337-7342.
[19] Z. Li, B. Zhao, D. Wang, Y. Wen, G. Liu, H. Dong, S. Song, C. Fan, "DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids", ACS Applied Materials & Interfaces, 6, 2014, pp. 17944-17953.
[20] M. Zhang, B.-C. Ye, "Label-free fluorescent detection of copper (ii) using DNA-templated highly luminescent silver nanoclusters", Analyst, 136, 2011, pp. 5139-5142.
[21] M. Zhang, S.-M. Guo, Y.-R. Li, P. Zuo, B.-C. Ye, "A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase", Chemical Communications, 48, 2012, pp. 5488-5490.
[22] T. Do, F. Ho, B. Heidecker, K. Witte, L. Chang, L. Lerner, "A rapid method for determining dynamic binding capacity of resins for the purification of proteins", Protein Expression and Purification, 60, 2008, pp. 147-150.
[23] M. Zhang, X.-Q. Jiang, H.-N. Le, P. Wang, B.-C. Ye, "Dip-and-read method for label-free renewable sensing enhanced using complex DNA structures", ACS Applied Materials & Interfaces, 5, 2013, pp. 473-478.
[24] P.W.K. Rothemund, "Folding DNA to create nanoscale shapes and patterns", Nature, 440, 2006, pp. 297-302.
[25] E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, A. Lind-Thomsen, W. Mamdouh, K.V. Gothelf, F. Besenbacher, J. Kjems, "DNA origami design of dolphin-shaped structures with flexible tails", ACS nano, 2, 2008, pp. 1213-1218.
[26] E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M.M. Golas, B. Sander, H. Stark, C.L.P. Oliveira, J.S. Pedersen, V. Birkedal, F. Besenbacher, K.V. Gothelf, J. Kjems, "Self-assembly of a nanoscale DNA box with a controllable lid", Nature, 459, 2009, pp. 73-U75.
[27] Y. Ke, S. Lindsay, Y. Chang, Y. Liu, H. Yan, "Self-assembled water-soluble nucleic acid probe tiles for label-free rna hybridization assays", Science, 319, 2008, pp. 180-183.
[28] Z. Zhang, Y. Wang, C. Fan, C. Li, Y. Li, L. Qian, Y. Fu, Y. Shi, J. Hu, L. He, "Asymmetric DNA origami for spatially addressable and index-free solution-phase DNA chips", Advanced Materials, 22, 2010, pp. 2672-2675.
[29] Z. Zhang, D. Zeng, H. Ma, G. Feng, J. Hu, L. He, C. Li, C. Fan, "A DNA-origami chip platform for label-free snp genotyping using toehold-mediated strand displacement", Small, 6, 2010, pp. 1854-1858.
[30] H.K.K. Subramanian, B. Chakraborty, R. Sha, N.C. Seeman, "The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami", Nano Letters, 11, 2011, pp. 910-913.
[31] A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, M. Komiyama, "Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy", Nat Commun, 2, 2011, pp. 449.
[32] A. Kuzuya, R. Watanabe, Y. Yamanaka, T. Tamaki, M. Kaino, Y. Ohya, "Nanomechanical DNA origami ph sensors", Sensors, 14, 2014, pp. 19329-19335.
Cite This Article
  • APA Style

    Karina M. M. Carneiro, Andrea A. Greschner. (2014). Recent Advances in Self-Assembled DNA Nanosensors. American Journal of Nano Research and Applications, 3(1-1), 1-7. https://doi.org/10.11648/j.nano.s.2015030101.11

    Copy | Download

    ACS Style

    Karina M. M. Carneiro; Andrea A. Greschner. Recent Advances in Self-Assembled DNA Nanosensors. Am. J. Nano Res. Appl. 2014, 3(1-1), 1-7. doi: 10.11648/j.nano.s.2015030101.11

    Copy | Download

    AMA Style

    Karina M. M. Carneiro, Andrea A. Greschner. Recent Advances in Self-Assembled DNA Nanosensors. Am J Nano Res Appl. 2014;3(1-1):1-7. doi: 10.11648/j.nano.s.2015030101.11

    Copy | Download

  • @article{10.11648/j.nano.s.2015030101.11,
      author = {Karina M. M. Carneiro and Andrea A. Greschner},
      title = {Recent Advances in Self-Assembled DNA Nanosensors},
      journal = {American Journal of Nano Research and Applications},
      volume = {3},
      number = {1-1},
      pages = {1-7},
      doi = {10.11648/j.nano.s.2015030101.11},
      url = {https://doi.org/10.11648/j.nano.s.2015030101.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.s.2015030101.11},
      abstract = {Over the past 30 years DNA has been assembled into a plethora of structures by design, based on its reliable base pairing properties. As a result, many applications of DNA nanotechnology are emerging. Here, we review recent advances in the use of self-assembled DNA nanostructures as sensors. In particular, we focus on how defined nanostructures, such as rigid DNA tetrahedra, provide an advantage over traditional nanosensors consisting of arrays of single-stranded DNA. We also explore advances in DNA origami that have resulted in consistent detection of single molecules.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Recent Advances in Self-Assembled DNA Nanosensors
    AU  - Karina M. M. Carneiro
    AU  - Andrea A. Greschner
    Y1  - 2014/12/27
    PY  - 2014
    N1  - https://doi.org/10.11648/j.nano.s.2015030101.11
    DO  - 10.11648/j.nano.s.2015030101.11
    T2  - American Journal of Nano Research and Applications
    JF  - American Journal of Nano Research and Applications
    JO  - American Journal of Nano Research and Applications
    SP  - 1
    EP  - 7
    PB  - Science Publishing Group
    SN  - 2575-3738
    UR  - https://doi.org/10.11648/j.nano.s.2015030101.11
    AB  - Over the past 30 years DNA has been assembled into a plethora of structures by design, based on its reliable base pairing properties. As a result, many applications of DNA nanotechnology are emerging. Here, we review recent advances in the use of self-assembled DNA nanostructures as sensors. In particular, we focus on how defined nanostructures, such as rigid DNA tetrahedra, provide an advantage over traditional nanosensors consisting of arrays of single-stranded DNA. We also explore advances in DNA origami that have resulted in consistent detection of single molecules.
    VL  - 3
    IS  - 1-1
    ER  - 

    Copy | Download

Author Information
  • School of Dentistry, Department of Preventive and Restorative Dental Science, UCSF, San Francisco, USA

  • Institut National de la Recherche Scientifique, Centre d’énergie, Matériaux et Télécommunications, Varennes, Canada

  • Sections