Investigations on the Hydrothermal Synthesis of Pure and Mg-Doped Nano-CuCrO2
American Journal of Nano Research and Applications
Volume 2, Issue 6-1, December 2014, Pages: 53-60
Received: Nov. 16, 2014; Accepted: Nov. 19, 2014; Published: Dec. 23, 2014
Views 3486      Downloads 264
Author
Dirk Friedrich, Wilhelm-Ostwald-Institute of Theoretical and Physical Chemistry, Department of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
Article Tools
Follow on us
Abstract
This paper presents some investigations on the hydrothermal synthesis of nano-CuCrO2. Several successively altered synthesis protocols are used to investigate effects of changing the mineralizer amount, lowering reaction temperature and addition of a reducing agent. As a result modified protocols for the hydrothermal synthesis of pure and Mg-doped CuCrO2 are presented. Different washing and annealing steps are used to perform a comparative XRD-study on these materials.
Keywords
Delafossite, CuCrO2, Hydrothermal Synthesis
To cite this article
Dirk Friedrich, Investigations on the Hydrothermal Synthesis of Pure and Mg-Doped Nano-CuCrO2, American Journal of Nano Research and Applications. Special Issue: Advanced Functional Materials. Vol. 2, No. 6-1, 2014, pp. 53-60. doi: 10.11648/j.nano.s.2014020601.17
References
[1]
O. Crottaz, F. Kubel, "Crystal structure of copper(I) chromium(III) oxide, 2H-CuCrO2" Z. Kristallogr. 211 (1996) 481.
[2]
D. Xiong, Z. Xu, X. Zeng, W. Zhang, W. Chen, X. Xu, M. Wang, Y.-B. Cheng, "Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells" J. Mater. Chem. 22 (2012) 24760.
[3]
D. Xiong, W. Zhang, X. Zeng, Z. Xu, W. Chen, J. Cui, M. Wang, L. Sun, Y.-B. Cheng, "Enhanced Performance of p-Type Dye-Sensitized Solar Cells Based on Ultrasmall Mg-Doped CuCrO2 Nanocrystals" ChemSusChem 6 (2013) 1432–1437.
[4]
X. Xu, B. Zhang, J. Cui, D. Xiong, Y. Shen, W. Chen, L. Sun, Y. Cheng, M. Wang, "Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes" Nanoscale 5 (2013) 7963–7969.
[5]
S. Powar, D. Xiong, T. Daeneke, M.T. Ma, A. Gupta, G. Lee, S. Makuta, Y. Tachibana, W. Chen, L. Spiccia, Y.-B. Cheng, G. Götz, P. Bäuerle, U. Bach, "Improved Photovoltages for p-Type Dye-Sensitized Solar Cells Using CuCrO2 Nanoparticles" J. Phys. Chem. C 118 (2014) 16375–16379.
[6]
R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, "p-type conductivity in CuCr1−xMgxO2 films and powders" J. Appl. Phys. 89 (2001) 8022.
[7]
K. Hayashi, K.-i. Sato, T. Nozaki, T. Kajitani, "Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO2" Jpn. J. Appl. Phys. 47 (2008) 59–63.
[8]
R. Bywalez, S. Götzendörfer, P. Löbmann, "Structural and physical effects of Mg-doping on p-type CuCrO2 and CuAl0.5Cr0.5O2 thin films" J. Mater. Chem. 20 (2010) 6562.
[9]
Q. Meng, S. Lu, S. Lu, Y. Xiang, "Preparation of p-type CuCr1−xMgxO2 bulk with improved thermoelectric properties by sol–gel method" J. Sol-Gel Sci. Technol. 63 (2012) 1–7.
[10]
M.J. Han, Z.H. Duan, J.Z. Zhang, S. Zhang, Y.W. Li, Z.G. Hu, J.H. Chu, "Electronic transition and electrical transport properties of delafossite CuCr1−xMgxO2 (0 ≤ x ≤ 12%) films prepared by the sol-gel method: A composition dependence study" J. Appl. Phys. 114 (2013) 163526.
[11]
W.C. Sheets, E. Mugnier, A. Barnabé, T.J. Marks, K.R. Poeppelmeier, "Hydrothermal Synthesis of Delafossite-Type Oxides" Chem. Mater. 18 (2006) 7–20.
[12]
S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, X. Zhu, "Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals" J. Cryst. Growth 310 (2008) 5375–5379.
[13]
S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, "Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals" Sensor Actuat. B-Chem. 143 (2009) 119–123.
[14]
M. Miclau, D. Ursu, S. Kumar, I. Grozescu, "Hexagonal polytype of CuCrO2 nanocrystals obtained by hydrothermal method" J. Nanopart. Res. 14 (2012).
[15]
D. Ursu, M. Miclau, I. Grozescu, "In situ variable temperature X-ray diffraction studies on size scale of CuCrO2 polytypes with delafossite structure" J. Optoelectron. Adv. M. 15 (2013) 768–773.
[16]
D.H. Ursu, M. Miclău, R. Bănică, I. Grozescu, "Hydrothermal synthesis and optical characterization of Ni-doped CuCrO2 nanocrystals" Phys. Scr. T157 (2013) 14053.
[17]
D. Ursu, M. Miclau, "Thermal stability of nanocrystalline 3R-CuCrO2" J. Nanopart. Res. 16 (2014).
[18]
R. Srinivasan, B. Chavillon, C. Doussier-Brochard, L. Cario, M. Paris, E. Gautron, P. Deniard, F. Odobel, S. Jobic, "Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis" J. Mater. Chem. 18 (2008) 5647.
[19]
M. Yu, T.I. Draskovic, Y. Wu, "Understanding the Crystallization Mechanism of Delafossite CuGaO2 for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates" Inorg. Chem. 53 (2014) 5845–5851.
[20]
A. Maignan, C. Martin, R. Frésard, V. Eyert, E. Guilmeau, S. Hébert, M. Poienar, D. Pelloquin, "On the strong impact of doping in the triangular antiferromagnet CuCrO2" Solid State Commun. 149 (2009) 962–967.
[21]
M.A. Khilla, Z.M. Hanafi, A.K. Mohamed, "Physico-chemical properties of chromium trioxide and its suboxides" Thermochim. Acta 59 (1982) 139–147.
[22]
P.G. Harrison, N.C. Lloyd, W. Daniell, "The Nature of the Chromium Species Formed during the Thermal Activation of Chromium-Promoted Tin(IV) Oxide Catalysts: An EPR and XPS Study" J. Phys. Chem. B 102 (1998) 10672–10679.
[23]
S. Labus, A. Malecki, R. Gajerski, "Investigation of thermal decomposition of CrOx (x ≥ 2.4)" J. Therm. Anal. Calorim. 74 (2003) 13–20.
[24]
T.K. Le, D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, A. Maignan, "The electronic structure of the CuRh1−xMgxO2 thermoelectric materials: An X-ray photoelectronspectroscopy study" J. Solid State Chem. 184 (2011) 2387–2392.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186