American Journal of Nano Research and Applications

| Peer-Reviewed |

Photocatalytic Degradation of Citric Acid in Wastewater in Presence of Visible Light by La:Ni:TiO2 Nanocomposite

Received: 04 July 2017    Accepted: 13 July 2017    Published: 16 September 2017
Views:       Downloads:

Share This Article

Abstract

In this study, nanocomposites of La:Ni:TiO2 nanocomposite was prepared by the co-precipitation method. The material was found in the nano dimension by the SEM and TEM analysis. The rutile and anatase both phases were present in XRD analysis of the synthesized materials. The particle size was found 24 and 82 nm in the case of La:Ni:TiO2 nanocomposite and pure Titania respectively. The surface area of Titania and La:Ni:TiO2 nanocomposite were found 6.4 and 43.2 m2/g. The band gap energy of Titania and La:Ni:TiO2 nanocomposite were found 3.2 eV and 3.0 eV respectively. The photodegradation of Citric Acid was investigated at different parameters such as temperature, concentration, pH of the reaction mixture, the dose of photocatalyst and time of illumination of visible light. The photodegradation of Citric Acid occurs 60-90% in presence of La:Ni:TiO2 nanocomposite, while in presence of titania 10-18%. It is found that photodegradation of Citric Acid follows the first order kinetics.

DOI 10.11648/j.nano.20170505.11
Published in American Journal of Nano Research and Applications (Volume 5, Issue 5, October 2017)
Page(s) 61-68
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Titania, Nanocomposite, Photocatalyst, Photodegradation, Citric Acid

References
[1] Jacoby W. A., Maness P. C., Wolfrum E. J., Blake D. M., Fennell J. A., Environ. Sci., Tech., 32 (1998) 2650.
[2] Hoffmann M. R., Martin S. T., Choi W. Y., Bahnemann D. W., Chem. Rev., 95 (1995) 69.
[3] Fujishima A., Hashimoto K., Watanabe T., BKC, Tokyo, 1999.
[4] Ziolli R. L., Jardim W. F., J. Photochem. Photobiol. A Chem. 147 (2002) 205.
[5] Berger T., Sterrer M., Diwald O., Knozinger E., Panayotov D., Thompson T. L., Yates J. T., J., Phys., Chem., B 109 (2005) 6061.
[6] Szczepankiewicz S. H., Moss J. A., Hoffmann M. R., J., Phys., Chem., B 106 (2002) 2922.
[7] Arabatzis I. M., Stergiopoulos T., Bernard M. C., Labou D., Neophytides S. G., Falaras P., Appl. Catal. B Environ. 42 (2003) 187.
[8] Arabatzis I. M., Stergiopoulos T., Andreeva D., Kitova S., Neophytides S. G., Falaras P., J., Catal. 220 (2003) 127.
[9] Hu C., Tang Y. H., Jiang Z., Hao Z. P., Tang H. X., Wong P. K., Appl. Catal. A Gen. 253 (2003) 389.
[10] Keleher J., Bashant J., Heldt N., Johnson L., Li Y. Z., World J., Microbiol. Biotechnol. 18 (2002) 133.
[11] Wang C., Wang T. M., Zheng S. K., Physica E 14 (2002) 242.
[12] Sun B., Vorontsov A. V., Smirniotis P. G., Langmuir 19 (2003) 3151.
[13] Li F. B., Li X. Z., Chemosphere 48 (2002) 1103.
[14] Vamathevan V., Amal R., Beydoun D., Low G., McEvoy S., J. Photochem. Photobiol. A Chem. 148 (2002) 233.
[15] Paunesku T., Rajh T., Wiederrecht G., Maser J., Vogt S., Stojicevic N., Protic M., Lai B., J. Oryhon, M. Thurnauer, G. Woloschak, Nat. Mater. 2 (2003) 343.
[16] Rajh R., Nedeljkovic J. M., Chen L. X., Poluektov O., Thurnauer M. C., J., Phys., Chem. B 103 (1999) 3515.
[17] Brune A., Jeong G., Liddell P. A., Sotomura T., Moore T. A., Moore A. L., Gust D., Langmuir 20 (2004) 8366.
[18] Krishna V., Pumprueg S., Lee S. H., Zhao J., Sigmund W., Koopman B., Moudgil B. M., Process Saf., Environ. Prot. 83 (2005) 393.
[19] Lee S. H., Pumprueg S., Moudgil B., Sigmund W., Colloids Surf. B Biointerfaces 40 (2005) 93.
[20] Krishna V., Noguchi N., Koopman B., Moudgil B., J. of Colloid and Interface Science 304 (2006) 166.
[21] Zhang L., kanki T., Sano N., Toyoda A., J. Solar Energy 70 (4) (2001) 331.
[22] Song K. H., Park M. K., Kwon V. T., Le K. W., Chang W. J., Lee W. I., Chem. mater, 13, (2001)2349.
[23] Ameta S. C., Punjabi P. B., Rao P., and Singhle B., J. Indian Chem Soc., 77, (2000)157.
[24] Ohtani B., Ogawa Y., and Nishimoto S., J. Phys. Chem. B, 101, (1997) 3746.
[25] Cao F., Oskam G. J., Meyer S., and Searson P. C., J. Phy. Chem. B, 100, (1996)17021.
[26] Armelao L., Barreca D., Bertapelle M., Balttaro G., Sada C., and Tondello E., thin solid films, 442, (2003), 48.
[27] Balamurugan B., Mehta B. R., Thin solid films, 396, (2001), 90.
[28] Beydoun D., and Amal R., J. Phys. Chem. B, 104 (2000) 4387.
[29] A. Kumar, G. Hitkari, M. Gautam, S. Singh, G. Pandey, Int. Adv. Res. J. in Science, Eng. And Tech., 2 (2015) 50-55, DOI 10.17148/IARJSET.2015.21208.
[30] Mills A., Jishun W., J. of Photochemistry and Photobiology A: Chem. 118 (1998) 53.
[31] Draper R. B., and Anne F. M., Langmuir, 6, (1990)1396.
[32] Jaeger C. D., Bard A. J., J., Am., Chem., Soc. 102. (1980)5435.
[33] Bickley R. I., Munuera G., and Stone F. S., J. Catal, 31, (1973) 398.
[34] Shiraishi F., and Kawanishi C., J. Phys. Chem., A 108, (2004)10491.
[35] Cullity B. D., Stock S. R., (2001), Elements of X-Ray Diffraction, Third Edition, and New Jersey: Prentice-Hall, Inc.
[36] A. Kumar, G. Pandey, Chem Sci J 8 (2017) 164. doi: 10.4172/2150-3494.1000164.
[37] Richard C., Bosquet F., Pilichowski J., J. of Photochemistry and Photobiology A: Chem. 108 (1997) 45.
[38] Rupa A. V., Divakar D., Sivakumar T., Catal Lett, 132: (2009), 259.
[39] Mahshid S., Askari M., Sasani Ghamsari M., Journal of Materials Processing Technology 189 (2007) 296.
[40] A. Kumar, D. Kumar, G. Pandey. J. Technological Advances and Scientific Res.; 2(4) (2016) 166-169, DOI: 10.14260/jtasr/2016/29.
[41] Kralova M., Levchuk I., Kasparek V., Sillanpaa M., Cihlar J., Chinese Journal of Catalysis, 36 (2015) 1679.
[42] Albetran H., O'Connor B. H., Low I. M., Materials & Design, 92 (2016) 480.
[43] Nair R. R., Arulraj K. R., Devi S., Materials Today: Proceedings, 3 (2016) 1643.
[44] Koh P. W., Hayrie M., Hatta M., Ong S. T., Yuliati L., Lee S. L., Journal of Photochemistry and Photobiology A: Chemistry, 332 (2017) 215.
[45] Khan A. W., Ahmad S., Hassan M. M., Naqvi A. H., Optical Materials, 38 (2014) 278.
[46] A. Kumar, G. Hitkari, M. Gautam, S. Singh, G. Pandey, Int. J. of Inno. Res. in Science, Eng. and Techn. 4 (2015) 12721-12731, DOI: 10.15680/IJIRSET.2015.0412097.
[47] Tang W., Qiu K., Zhang P., Yuan X., App. Surface Science, 362 (2016) 545.
[48] A. Kumar and G. Pandey, Chemical Science Transactions 2017, 6(3), 385-392, DOI: 10.7598/cst2017.1378.
[49] Chen D., Ray A. K., Appl. Catal. B: Environ. 23 (1999) 143.
[50] A. Kumar, G. Pandey. American Journal of Nano Research and Applications. 5, (2017) 40-48, doi: 10.11648/j.nano.20170504.11.
[51] Yang J., Chen C., Ji H., Wanhong M., and Zhao J., J. Phys. Chem. B, 109 (2005) 21900.
[52] A. Kumar, G. Pandey, Desalination and Water Treatment, 71 (2017) 406–419, doi: 10.5004/dwt.2017.20541.
[53] Vulliet E., Chovelon J. M., Guillard C., Herrmann J. M., J. Photochem. Photobiol. A: Chem. 159 (2003) 71.
[54] Matthews R. W., J. Applied Catalysis. 111 (1988) 264.
[55] Vautier M., Guillard C., Herrmann J. M., J. Catal. 201 (2001) 46.
[56] Freundlich H., Ueber D., J. Phys. Chem. 57 (1907) 385.
[57] Langmuir I., J. Am. Chem. Soc. 40 (1918) 1361.
[58] Ono Y., Rachi T., Okuda T., Yokouchi M., Kamimot Y., Nakajima A., Okada K., J. of Physics and Chemistry of Solids 73 (2012) 343.
Author Information
  • Department of Applied Chemistry, School for Physical Sciences Babasaheb Bhimrao Ambedkar University, Lucknow, India

  • Department of Applied Chemistry, School for Physical Sciences Babasaheb Bhimrao Ambedkar University, Lucknow, India

Cite This Article
  • APA Style

    Azad Kumar, Gajanan Pandey. (2017). Photocatalytic Degradation of Citric Acid in Wastewater in Presence of Visible Light by La:Ni:TiO2 Nanocomposite. American Journal of Nano Research and Applications, 5(5), 61-68. https://doi.org/10.11648/j.nano.20170505.11

    Copy | Download

    ACS Style

    Azad Kumar; Gajanan Pandey. Photocatalytic Degradation of Citric Acid in Wastewater in Presence of Visible Light by La:Ni:TiO2 Nanocomposite. Am. J. Nano Res. Appl. 2017, 5(5), 61-68. doi: 10.11648/j.nano.20170505.11

    Copy | Download

    AMA Style

    Azad Kumar, Gajanan Pandey. Photocatalytic Degradation of Citric Acid in Wastewater in Presence of Visible Light by La:Ni:TiO2 Nanocomposite. Am J Nano Res Appl. 2017;5(5):61-68. doi: 10.11648/j.nano.20170505.11

    Copy | Download

  • @article{10.11648/j.nano.20170505.11,
      author = {Azad Kumar and Gajanan Pandey},
      title = {Photocatalytic Degradation of Citric Acid in Wastewater in Presence of Visible Light by La:Ni:TiO2 Nanocomposite},
      journal = {American Journal of Nano Research and Applications},
      volume = {5},
      number = {5},
      pages = {61-68},
      doi = {10.11648/j.nano.20170505.11},
      url = {https://doi.org/10.11648/j.nano.20170505.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.nano.20170505.11},
      abstract = {In this study, nanocomposites of La:Ni:TiO2 nanocomposite was prepared by the co-precipitation method. The material was found in the nano dimension by the SEM and TEM analysis. The rutile and anatase both phases were present in XRD analysis of the synthesized materials. The particle size was found 24 and 82 nm in the case of La:Ni:TiO2 nanocomposite and pure Titania respectively. The surface area of Titania and La:Ni:TiO2 nanocomposite were found 6.4 and 43.2 m2/g. The band gap energy of Titania and La:Ni:TiO2 nanocomposite were found 3.2 eV and 3.0 eV respectively. The photodegradation of Citric Acid was investigated at different parameters such as temperature, concentration, pH of the reaction mixture, the dose of photocatalyst and time of illumination of visible light. The photodegradation of Citric Acid occurs 60-90% in presence of La:Ni:TiO2 nanocomposite, while in presence of titania 10-18%. It is found that photodegradation of Citric Acid follows the first order kinetics.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Photocatalytic Degradation of Citric Acid in Wastewater in Presence of Visible Light by La:Ni:TiO2 Nanocomposite
    AU  - Azad Kumar
    AU  - Gajanan Pandey
    Y1  - 2017/09/16
    PY  - 2017
    N1  - https://doi.org/10.11648/j.nano.20170505.11
    DO  - 10.11648/j.nano.20170505.11
    T2  - American Journal of Nano Research and Applications
    JF  - American Journal of Nano Research and Applications
    JO  - American Journal of Nano Research and Applications
    SP  - 61
    EP  - 68
    PB  - Science Publishing Group
    SN  - 2575-3738
    UR  - https://doi.org/10.11648/j.nano.20170505.11
    AB  - In this study, nanocomposites of La:Ni:TiO2 nanocomposite was prepared by the co-precipitation method. The material was found in the nano dimension by the SEM and TEM analysis. The rutile and anatase both phases were present in XRD analysis of the synthesized materials. The particle size was found 24 and 82 nm in the case of La:Ni:TiO2 nanocomposite and pure Titania respectively. The surface area of Titania and La:Ni:TiO2 nanocomposite were found 6.4 and 43.2 m2/g. The band gap energy of Titania and La:Ni:TiO2 nanocomposite were found 3.2 eV and 3.0 eV respectively. The photodegradation of Citric Acid was investigated at different parameters such as temperature, concentration, pH of the reaction mixture, the dose of photocatalyst and time of illumination of visible light. The photodegradation of Citric Acid occurs 60-90% in presence of La:Ni:TiO2 nanocomposite, while in presence of titania 10-18%. It is found that photodegradation of Citric Acid follows the first order kinetics.
    VL  - 5
    IS  - 5
    ER  - 

    Copy | Download

  • Sections