The Energy Levels Splitting Calculated for the Heavy and Light Holes in a Cd1-xZnxS Double Quantum Dot
American Journal of Nano Research and Applications
Volume 5, Issue 3, June 2017, Pages: 32-36
Received: Mar. 23, 2017; Accepted: Apr. 19, 2017; Published: Jun. 14, 2017
Views 1587      Downloads 101
Authors
Zoubeida Khefacha, Departement of Chemistry, Faculty of Sciences, University of Monastir, Monastir, Tunisia
Nabil Safta, Unity of Quantum Physics, Faculty of Sciences, University of Monastir, Monastir, Tunisia
Mohamed Dachraoui, Laboratory of Analytical Chemistry and Electrochemistry, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
Article Tools
Follow on us
Abstract
This work reports on a theoretical investigation of a double Cd1-xZnxS quantum dot embedded in an insulating material.The quantum dots are assumed to have a flattened cylindrical geometry with a finite barrier at the boundary.The energy levels splitting has been computed, using the tight binding approximation, in the case of the heavy and light holes, as a function of zinc composition for different inter-quantum dot separations. An analysis of the results shows that, for the light holes, the coupling is maximum when x=0.8. Moreover, it has been demonstrated the strong localization character of the heavy holes in this nanostructure.
Keywords
Double Quantum Dot, Cd1-xZnxS, Heavy and Light Holes, Tight Binding Approximation, Non Volatile Memories
To cite this article
Zoubeida Khefacha, Nabil Safta, Mohamed Dachraoui, The Energy Levels Splitting Calculated for the Heavy and Light Holes in a Cd1-xZnxS Double Quantum Dot, American Journal of Nano Research and Applications. Vol. 5, No. 3, 2017, pp. 32-36. doi: 10.11648/j.nano.20170503.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
A. Sakly, N. Safta and A. Ben Lamine. (2004), Interpretation of the bowing phenomenon in Cd1-xZnxS alloy’’ J. Mater. Sci.-Mater. Electron.15: 351.
[2]
N. A. Shah, A. Nazir, W. Mahmood, W. A. Syed, S. Butt, Z. Ali and A. Maqsood. (2012), Physical properties and characterization of Ag doped CdS thin films J. Alloys Compd. 512: 27.
[3]
T. P. Kumar, S. Saravanakumar and K. Sankaranayanan. (2011), Effect of annealing on the surface and band gap alignment of CdZnS thin films’’, Appl. Surf. Sci. 257 (6): 1923.
[4]
B. Bhattacharjee, S. K. Mandal, K. Chakrabarti, D. Ganguli and S. Chaudhui. (2002), Optical properties of Cd1−xZnxS nanocrystallites in sol–gel silica matrix’’ J. Phys. D: Appl. Phys. 35: 2636-2642.
[5]
H. H. Gürel, Ö. Akinci and H. Ünlü. (2008), Tight binding modeling of CdSe/ZnS and CdZnS/CdS II–VI heterostructures for solar cells: Role of d-orbitals’’ Thin Solid Films 516: 7098.
[6]
M. Gunasekaram, M. Ichimura. (2007) Photovoltaic cells based on pulsed electrochemically deposited SnS and photochemically deposited CdS and Cd1−xZnxS,’’ Sol. Energy Mater. Sol. Cells. 91: 774.
[7]
Z. Khéfacha, M. Mnari and M. Dachraoui (2002) Caractérisation des couches minces de Cd1–xZnxS préparées par dépôt chimique,’’ Comptes Rendus Chimie. 5(3): 149-155.
[8]
Z. Khéfacha, Z. Benzarti, M. Mnari and M. Dachraoui, (2004) “Electrical and optical properties of Cd1-xZnxS (0≤x≤0.18) grown by chemical bath deposition”, Journal of crystal growth.260: 400- 409.
[9]
Z. Khéfacha, M. Mnari and M. Dachraoui (2003) Opto – electronical of thin films prepared by chemical bath deposition,’’ Physical and Chemical News. 14:77-84.
[10]
A. J. Peter and C. W. Lee. (2012), Electronic and optical properties of CdS/CdZnS nanocrystals’’ ChinesePhys. B 21: 087302.
[11]
F. Scotognella, G. Lanzani, L. Manna, F. Tassoneand M.Zavelani-Rossi. (2012), Study of higher-energy core states in CdSe/CdS octapod nanocrystals by ultrafast spectroscopy’’ Eur. Phys. J. B. 85: 128.
[12]
L. Cao, S. Huang and S. E. (2004), ZnS/CdS/ZnS quantum dot quantum well produced in inverted micelles’’ J. colloidInterface Sci. 273: 478-482.
[13]
H. Kumano, A. Ueta and I. Suemune. (2002), Modified spontaneous emission properties of CdS quantum dots embedded in novel three-dimensional microcavities’’ Physica E 13: 441-445
[14]
Y. C. Zhang, W. W. Chen andX. Y. Hu. (2007), ‚‘In air synthesis of hexagonal Cd1-xZnxS nanoparticles from single-source molecular precursors’’ Mater. Lett. 61: 4847-4850
[15]
C. S. Pathak, D. D. Mishra, V. Agarawala, M. K. Mandal. (2012), Mechanochemical synthesis, characterization and optical properties of zinc sulphide nanoparticles’’ Indian J. Phys86: 777-781.
[16]
S. Roy, A. Gogoi and G. A. Ahmed. (2010), Size dependent optical characterization of semiconductor particle: CdS embedded in polymer matrix Indian J. Phys. 84: 1405-1411
[17]
A. U. Ubale and A. N. Bargal. (2010), Characterization of nanostructured photosensitive cadmium sulphide thin films grown by SILAR deposition technique’’ Indian J. Phys. 84: 1497-1507
[18]
K. K Nanda, S.N. Sarangi, S. Mohanty, S.N. Sahu. (1998), ‚‘Optical properties of CdS nanocrystalline films prepared by a precipitation technique’’ Thin Solid Films 322: 21-27.
[19]
N. Safta. (2004), Fluctuations mode of the gap as a function of composition of Cd1-xZnxS ternaries’’ Ann. Chim. Sci. Mat. 29 (5) 105-112
[20]
H. Yükselici, P. D. Persans and T. M. Hayes. (1995), Optical studies of the growth of Cd1-xZnxS nanocrystals in borosilicate glass Phys. Rev. B. 52: 11763.
[21]
N. -K. Cho, J.-W. Yu, Y. H. Kim, and S. J. Kang. (2014) "Effect of oxygen plasma treatment on CdSe/CdZnS quantum-dot light-emitting diodes," Jpn. J. Appl. Phys. 53: 032101.
[22]
Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun. (2014) "Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping," Adv. Mater, Doi: 10.1002/adma.201403237.
[23]
J. J. Beato-López, C. Fernández-Ponce, E. Blanco, C. Barrera-Solano, M. Ramírez-del-Solar, M. Domínguez, F. García-Cozar, and R. Litrán.(2012) "Preparation and characterization of fluorescent CdS quantum dots used for the direct detection of GST fusion proteins," Nanomaterials and Nanotechnology, 2: 10.
[24]
K. Deepa, S. Senthil, S. Shriprasad, and J. Madhavan, "CdS quantum dots sensitized solar cells (2014)" International Journal of Chem Tech Research, 6: 1956–1958.
[25]
N. Safta, J-P. Lacharme and C. A. Sébene (1993) Clean Si(110): a surface with intrinsic or extrinsic defects ?,’’ Surf. Sci. 287/288: 312, 1993.
[26]
N. Safta, J. P. Lacharme, A. Cricenti, A. Taleb-Ibrahimi, Indlekofer, V.Aristov, C. A. Sébenne, G. Le Lay and B. Nesterenko (1995) Core level spectra of clean “2 × 8” vicinal Si(110)’’, Nuclear Instruments and Methods in Physics Research B. 97: 372.
[27]
A. Cricenti, G. Le Lay, V. Yu Aristov, B. Nesterenko, N. Safta, J.P. Lacharme, C.A. Sébenne, A. Taleb-Ibrahimi and G. Indlekofer (1995) High resolution syncrotron radiation Si 2p core-level spectroscopy of Si(110)16x2’’, Journal of Electron Spectroscopy and related phenomena . 76: 613-617.
[28]
L. Cao, S. Huang, and E. S (2004) "ZnS/CdS/ZnS quantum dot quantum well produced in inverted micelles," J. Colloid Interface Sci. 273: 478–482.
[29]
H. Kumano, A. Ueta, and I. Suemune (2002) "Modified spontaneous emission properties of CdS quantum dots embedded in novel three-dimensional microcavities," Physica E. 13: 441-445.
[30]
Y. C. Zhang, W. W. Chen, and X. Y. Hu (2007) "In air synthesis of hexagonal Cd1-xZnxS nanoparticles from single-source molecular precursors," Mater. Lett. 61: 4847-4850.
[31]
K. Tomihira, D. Kim, and M. Nakayama (2005) "Optical properties of ZnS-CdS alloy quantum dots prepared by a colloidal method," J. Lumin. 112: 131- 135.
[32]
Z. Khéfacha, N. Safta and M. Dachraoui (2016) The Band Gap Energy Calculated for Cd1- xZnxS Quantum Dots grown by the Sol gel Method,’’ International Journal of Applied Chemistry. 12: 573-579.
[33]
N. Safta, A. Sakly, H. Mejri and Y. Bouazra. (2006), “Electronic and optical properties of Cd1-xZnxS nanocrystals’’ Eur. Phys. J. B 51: 75-78
[34]
A. Sakly, N. Safta, A. Mejri, H. Mejri, A. Ben Lamine (2010), The Excited Electronic States Calculated for Cd1-xZnxS Quantum Dots Grown by the Sol-Gel Technique’’ Journal of Nanomaterials 2010, Article ID 746520, 4 pages. doi:10.1155/2010/746520
[35]
N. Safta, A. Sakly, H. Mejri and M. A. Zaïdi (2006), Electronic properties of multi-quantum dot structures in Cd1-xZnxS alloy semiconductors’’ Eur. Phys. J. B 53: 35 – 38.
[36]
S. Marzougui, and N. Safta (2015) “The excited electronic states and the oscillator strength calculated for flattened cylindrical Cd1-xZnxS quantum dots,” International Journal of Chemistry and Materials Research, 3: 17-26.
[37]
A. Sakly, N. Safta, H. Mejri, A. Ben Lamine (2009), The electronic band parameters calculated by the Kronig–Penney method for Cd1-xZnxS quantum dot superlattices’’ J. Alloys Compd. 476: 648–652.
[38]
A. Sakly, N. Safta, H. Mejri, A. Ben Lamine. (2011), The electronic states calculated using the sinusoidal potential for Cd1-xZnxS quantum dot superlattices’’ J. Alloys Compd.509: 2493–2495.
[39]
S. Marzougui, N. Safta. (2014), The electronic band parameters calculated by the Triangular potential model for Cd1-xZnxS quantum dot superlattices’’ IOSR-JAP 5 (5): 36-42.
[40]
S. Marzougui, N. Safta. (2014), The electronic band parameters calculated by the Tight Binding Approximation for Cd1-xZnxS quantum dot superlattices’’ IOSR-JAP 6 (2): 15-21
[41]
S. Marzougui, N. Safta. (2014), A theoretical study of the electronic properties of Cd1-xZnxS quantum dot superlattices’’ American Journal of Nanoscience and Nanotechnology 2 (3): 45-49.
[42]
S. Marzougui and N. Safta (2014) “A theoretical study of the heavy and light hole properties of Cd1-xZnxS quantum dot superlattices.,” International Journal of Materials Science and Applications. 3: 274-278.
[43]
S. Marzougui and N. Safta (2015) " The Electronic Band Parameters Calculated by a Novel Potential Model for Cd1-xZnxS Quantum Dot Super lattices,” Research journal of Materials science. 3: 9-14.
[44]
S. Marzougui and N. Safta (2015) “The electron transmission coefficient calculated for Cd1-xZnxS quantum dots-Application in the non volatile memories” International Journal of Applied Engineering Research. 10 (21): 42275-42278.
[45]
Z. Khéfacha, N. Safta and M. Dachraoui (2017) “The energy levels splitting calculated for electrons in a double Cd1-xZnxS quantum dot” To be published.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186