| Peer-Reviewed

Influence of the Quality of Maintenance of Fish Ponds on the Biomass of Zooplankton in situ in Tropical Zone (Yaoundé-Cameroon-Central Africa)

Received: 30 April 2019    Accepted: 12 June 2019    Published: 26 June 2019
Views:       Downloads:
Abstract

A comparative study of the biomass of zooplankton of four semi-intensive fish ponds found in the ecological area of Yaoundé in Cameroon was sampled for 9 months, which made it possible to evaluate the influence of the maintenance quality of the water bodies on their productivity. There were three ponds E1, E2, and E3 fertilized with organic and mineral matter, sampled from March to November 2012 on the one hand and on the other hand an experimental pond ET serving as a control, which was sampled from March to November 2014. ET was fertilized with mineral and organic matter and received particular attention during the first three months of breeding. The breeding method recommended in these ponds was the polyculture of Clarias gariepinus and Oreochromis niloticus. The samples were collected twice a month at 20 cm depth. Physico-chemical and biological analyses were measured using appropriate techniques. Zooplankton biomass remained very high in ET relative to E1, E2 and E3 (90% vs. 10%), creating an uneven profile in all water bodies. Minimum biomass values were 119 mg C / L in E1, 200 mg C / L in E2, 40 mg C / L in E3 and 781 mg C / L in ET; the maximum values being 748 mg C / L, 2643 mg C / L, 474 mg C / L and 67010 mg C / L in E1, E2, E3 and ET respectively. The largest contributors to this biomass were rotifers followed by Cladocerans in ET and E2 and Copepods followed by rotifers in E1 and E3. Food resources were thus limited in these last two water bodies compared to others. Abiotic and biological analyses indicate that these water bodies were oligomesotrophic (E1 and E3), mesotrophic (E2) and eutrophic (ET). ET under these conditions enabled the production of a satisfactory fish yield. It is therefore recommended that, fish farmers should improve the quality of maintenance of fish ponds which together with good fertilization will generate maximum productivity.

Published in International Journal of Natural Resource Ecology and Management (Volume 4, Issue 3)
DOI 10.11648/j.ijnrem.20190403.11
Page(s) 62-72
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Semi-intensive Fish Pond, Biomass, Zooplankton, Quality of Maintenance

References
[1] Dussart B. H., 1986. Limnologie. Ed. Gauthiers Villars, Paris.
[2] Lair N., Reyes-Marchant P. & Jacquet V., 1998. Développement du phytoplankton, des ciliés et des rotifers sur deux sites de la Loire moyenne (France) en période d’étiage. Annls. Limnol., 34, 35-48.
[3] Haberman J., 1998. Zooplankton of lake Vörtsjärv. Annls. Limnol., 28, 49-65.
[4] Piasecki W., Goodurin A. E., Eiras J. C. & Nowak B. F., 2004. Importance of Copepoda in Freshwater Aquaculture. Zoological Studies, 43, 193- 205.
[5] Amoros C., 1984. Crustacés cladocères. In: Introduction pratique à la systématique des organismes des eaux continentales françaises 5, Bull. Mens. Soc. Lin. Lyon, 3, 53-63.
[6] Zébazé Togouet S. H., Njiné T., Kemka N., Nola M., Foto Menbohan S., Niyitegeka D., Ngassam P. et Boutin C., 2006. Composition et distribution spatio-temporelle des protozoaires ciliés dans un petit lac hypereutrophe du Cameroun (Afrique Centrale). Rev. Sci. Eau, 19: 151-162.
[7] FAREC, 2019. (Fédération Aquacole de la Région Centre). La filière pisciculture d’étang de la région Centre Val de Loire au Salon de l’Agriculture, 2019; La pisciculture: passions et tradition d’avenir, 4 p.
[8] Blé M. C., Vanga Adja F., Assi Kaudhjis P. J., Alla Yao L., Efolé Ewoukem T., Kouassi Adjoua F., Coulibaly Kanidana S., Mikolasek O., 2015. Environnement socio-économique des exploitants piscicoles du Centre-Ouest et du Sud-Ouest de la Côte D’Ivoire. F. Tech. & Doc. Vulg.: 12-17- Volume spécial.
[9] Agadjihouede H., Chikou A., Montchowui E. et Laleye P., 2014. Effet de la densité initiale de mise en charge sur la survie et la croissance des larves d’Heterobranchus longifilis (Valenciennes, 1840) élevées en bassins fertilisés. Journal of Applied Biosciences, 84: 1997-5902.
[10] MINEPIA, 2008. Stratégie pour un développement durable de l’aquaculture au Cameroun. Rapport de séminaire, 4 p.
[11] FAO, 2016. La situation mondiale des pêches et de l’aquaculture: contribuer à la sécurité alimentaire et à la nutrition de tous. Rome 224 p.
[12] Blé M. C., Assi Kaudhjis P. J., Vanga Adja F., Efolé Ewoukem T., Alla Yao L., Mikolasek O., Amian Atsé F., Kouassi Adjoua F., Coulibaly Kanidana S., Wandan Eboua N., 2015. Pratiques piscicoles dans le Centre-Ouest et le Sud-Ouest de la Côte D’Ivoire. F. Tech. & Doc. Vulg.: 3-11- Volume spécial.
[13] MAPA (Ministère de l’Agriculture, des pêcheries et de l’Alimentation), 2016. Aquaculture, Document d’information spécialisée. Lois et règlements relatifs à l’Aquaculture en eau douce; Agriculture, Pêcheries et Alimentation Québec; 16 p.
[14] Zébazé Togouet S. H., Dakwen J. P., Foto Membohan S., Banga Medjo M. P., Essomba Biloa R. E. and Njiné T., 2015. Influence d’un enrichissement sommaire sur la biomasse zooplanctonique des étangs piscicoles in situ en zone tropicale (Cameroun- Afrique Centrale). European Journal of Scientific Research, 131 (1): 22 – 40.
[15] Pourriot R., 1968. Rotifères du lac Tchad. Bulletin IFAN. 30, 471-496.
[16] Green J., 1977. Dwarfing of rotifers in tropical crater lakes. Arch. Hydrobiol. Beich, 8, 232-236.
[17] Zébazé Togouet S. H., 2000. Biodiversité et dynamique des populations de Zooplancton (Ciliés, Rotifères, Cladocères et Copépodes) du Lac Municipal de Yaoundé (Cameroun). Thèse Doctorat 3ème cycle, Université de Yaoundé I, Cameroun, 175p + Annexes.
[18] Rodier J., Legube B., Merletet N., Brun R., Mialocq J. C., Leroy P., Houssin M., 2009. L’analyse de l’eau: eaux naturelles, eaux résiduaires et eau de mer. Chimie, physico-chimie, interprétation des résultats. (9e édition), Paris, Dunod. 1579 p.
[19] Besnard A. & Salles J. M., 2010. Suivi scientifique d’espèces animales. Aspects méthodologiques essentiels pour l’élaboration de protocoles de suivis. Note méthodologique à l’usage des gestionnaires de sites Natura 2000, Rapport DREAL PACA, Pôle Natura 2000.
[20] Dakwen J. P., Zébazé Togouet S. H., Tuekam Kayo R. P., Djeufa Heuchim C., Nziéleu Tchapgnouo J. G., Foto Menbohan S., Njiné T., 2015. Physico-chemistry characterization and zooplankton specific diversity of two fishponds in Yaoundé (Cameroon, Central Africa). Journal of Biodiversity and Environmental Sciences, 6 (2): 16-30
[21] Pourriot R., 1980. Rotifères. In: IDT ORSTOM (Eds.), Flore et faune aquatiques de l’Afrique sahélo-soudanienne I (pp. 219-244). Paris.
[22] Fernando C. H., 2002. Introduction in a guide to tropical fresh water zooplankton. Identification ecology and impact on fisheries. Ed. C. H. Fernando, Leiden (Netherlands).
[23] Dussart B. H. & Defaye D., 1995. Copepoda: Introduction to the copepoda. Guide to the identification to the Microinvertebrates of the continental waters of the world 7. Ed. H. J. Dumont, S. P. B., Acad. Publ., The Hague.
[24] Legende L. & Watt W. D., 1972. On a rapid technique for plankton enumeration. Annls. Inst. Oceanogr., XLVIII, 173-177.
[25] Sime-Ngando T., Hartmann H. J. & Groliere C. A., 1990. Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods. Appl. Environ. Microbiol., 56: 2234-2242.
[26] Dumont H. J., Van de Velde I. & Dumont S., 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19, 75 – 97.
[27] Zébazé Togouet S. H., Njiné T., Kemka N., Nola M., Foto Menbohan S., Monkiedje A., Niyitegeka D., Simé-Ngando T. & Jugnia L. B., 2005. Variations spatiales et temporelles de la richesse et de l’abondance des rotifères (Brachionidae et Trichocercidae) et des cladocères dans un petit lac artificiel eutrophe situé en zone tropicale. Rev. Sci. Eau, 18, 485-506.
[28] Viner A. B., 1969. The chemistry of the water of lake George, Uganda. Verh. Int. Ver. Limnol., 17, 289-296.
[29] Billard R. et Marie D., 1980. La qualité des eaux de l’étang de pisciculture et son contrôle. In: Billard R. (Ed.), La pisciculture en étang, INRA Publ., Paris (France), Pp 107-127.
[30] FAO (Food and Agricultural Organisation), 2018. La situation mondiale des pêches et de l’aquaculture. Atteindre les objectifs du développement durable. Rapport annuel, 28 p.
[31] Schlumberger O., 2002. Mémento de la pisciculture d’étang, 4ième édition. CEMAGREF (Ed), Montpellier (France), 237 p.
[32] Efole Ewoukem T., Aubin J., Tomedi Eyango M., Mikolasek O., Corson M. S., Tchoumboué J., Van der Werf H. M. G. et Ombredane D., 2010. Environmental impacts of farms integrating aquaculture and agriculture in Cameroon. Proceeding of LCAfood 2010, (1): 375-380
[33] Mikolasek O., 2003. Forces et faiblesses de la pisciculture de la vallée du Ribeira, Etat de San Paulo, Brésil: une typologie pour éclairer les pratiques des pisciculteurs. Mémoire de DEA INAP-G, Paris (France), 26 p.
[34] Dabbadie L., Lazard J. et Oswald M., 2002. Pisciculture et élevages non conventionnels: Pisciculture, Mémento de l’Agronome, CIRAD-GRET (Ed), Ministère des Affaires étrangères (France), 2: 1571-1651
[35] Mikolasek O., et Lazard J., 1999. La pisciculture continentale en milieu tropical. In: actes de colloque: Réalités et perspectives de développement de l’aquaculture dans le Sud-Ouest de l’Océan Indien – Iles de la Réunion Saint Leu les 31 mai au 3 juin 1999, ARDA – Aquaculture, Pp 32- 41.
[36] Mikolasek O., Guérin G., Lopez A., Khuyen T. D., Huy P. T., Dien N. T., 2006. Local fish farming practices and a typology of farms based on organic matter intake management. In: Orphyre V., Coi N. Q. (Eds.), Pig Production Development, Animal Waste Management and Environment Protection: A Case Study in Thai Binh Province, Northern Vietnam. PRISE Publications, France, 107–125
[37] Pouomogne V., 1998. Pisciculture en milieu tropical africain: comment produire du poisson à coût modéré. CEPID/Coopération Française, Yaoundé (Cameroun), Presses Universitaire d’ Afrique, 236 p.
[38] Morin R., 2012. « Qualité de l’eau requise pour l’élevage des salmonidés ». Document d’information DADD-14. Ministère de l’agriculture, des Pêcheries et de l’Alimentation 25 p. http:// www. mapaq. gouv. qc. Ca/Fr/Peche
[39] Tomedi Eyango M., Efolé Ewoukem T., Blé M. C., Ndzana B. E. B., Songmo B. L., Nyamsi Tchatcho N. L., Mikolasek O., Tchoumbougnang F., 2015. Rizipisciculture: voie d’intensification écologique des systèmes piscicoles extensifs. F. Tech. & Doc. Vulg.: 18-23- Volume spécial.
[40] Wurtz W. A. et Durborow R. M., 1982. Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds, southern Regional Aquaculture center, U.S., Publication N° 464, 4 p.
[41] Côté R., Bussières D., Desgagnés P., 2019. Spatio-temporal distribution of phytoplankton and zooplankton in Lake Saint-Jean (Quebec), Hydro-electric reservoir; Rev. Sci. Eau, 15 (3): 597-614.
[42] Ustun F., Bat L., Sahin F., 2019. Composition, abundance and biomass of Mesozooplankton in the South western Black Sea Along the coast of Igneada, Turkey. Biologia. DOI: 10.2478/s11756-019-00219-w
[43] Mac Naugit D. C., 1975. A hypothesis to explain the succession from calanoids to cladocerans during eutrophication. Verh. Int. Ver. Limnol., 19, 724-731
[44] Tuffery G., 1980. Incidences écologiques de la pollution des eaux courantes Révélateurs biologiques de la pollution. In: Gauthier-Villars (Ed.), Paris. La pollution des eaux continentales. Incidence sur la biocénose aquatique (Pp. 243-280).
Cite This Article
  • APA Style

    Jeannette Prudence Dakwen, Serge Hubert Zebaze Togouet, Sylvie Belengfe Chinche, Olive Vivien Noah Ewoti, Mireille Kapso Tchouankep, et al. (2019). Influence of the Quality of Maintenance of Fish Ponds on the Biomass of Zooplankton in situ in Tropical Zone (Yaoundé-Cameroon-Central Africa). International Journal of Natural Resource Ecology and Management, 4(3), 62-72. https://doi.org/10.11648/j.ijnrem.20190403.11

    Copy | Download

    ACS Style

    Jeannette Prudence Dakwen; Serge Hubert Zebaze Togouet; Sylvie Belengfe Chinche; Olive Vivien Noah Ewoti; Mireille Kapso Tchouankep, et al. Influence of the Quality of Maintenance of Fish Ponds on the Biomass of Zooplankton in situ in Tropical Zone (Yaoundé-Cameroon-Central Africa). Int. J. Nat. Resour. Ecol. Manag. 2019, 4(3), 62-72. doi: 10.11648/j.ijnrem.20190403.11

    Copy | Download

    AMA Style

    Jeannette Prudence Dakwen, Serge Hubert Zebaze Togouet, Sylvie Belengfe Chinche, Olive Vivien Noah Ewoti, Mireille Kapso Tchouankep, et al. Influence of the Quality of Maintenance of Fish Ponds on the Biomass of Zooplankton in situ in Tropical Zone (Yaoundé-Cameroon-Central Africa). Int J Nat Resour Ecol Manag. 2019;4(3):62-72. doi: 10.11648/j.ijnrem.20190403.11

    Copy | Download

  • @article{10.11648/j.ijnrem.20190403.11,
      author = {Jeannette Prudence Dakwen and Serge Hubert Zebaze Togouet and Sylvie Belengfe Chinche and Olive Vivien Noah Ewoti and Mireille Kapso Tchouankep and Thomas Njine},
      title = {Influence of the Quality of Maintenance of Fish Ponds on the Biomass of Zooplankton in situ in Tropical Zone (Yaoundé-Cameroon-Central Africa)},
      journal = {International Journal of Natural Resource Ecology and Management},
      volume = {4},
      number = {3},
      pages = {62-72},
      doi = {10.11648/j.ijnrem.20190403.11},
      url = {https://doi.org/10.11648/j.ijnrem.20190403.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnrem.20190403.11},
      abstract = {A comparative study of the biomass of zooplankton of four semi-intensive fish ponds found in the ecological area of Yaoundé in Cameroon was sampled for 9 months, which made it possible to evaluate the influence of the maintenance quality of the water bodies on their productivity. There were three ponds E1, E2, and E3 fertilized with organic and mineral matter, sampled from March to November 2012 on the one hand and on the other hand an experimental pond ET serving as a control, which was sampled from March to November 2014. ET was fertilized with mineral and organic matter and received particular attention during the first three months of breeding. The breeding method recommended in these ponds was the polyculture of Clarias gariepinus and Oreochromis niloticus. The samples were collected twice a month at 20 cm depth. Physico-chemical and biological analyses were measured using appropriate techniques. Zooplankton biomass remained very high in ET relative to E1, E2 and E3 (90% vs. 10%), creating an uneven profile in all water bodies. Minimum biomass values were 119 mg C / L in E1, 200 mg C / L in E2, 40 mg C / L in E3 and 781 mg C / L in ET; the maximum values being 748 mg C / L, 2643 mg C / L, 474 mg C / L and 67010 mg C / L in E1, E2, E3 and ET respectively. The largest contributors to this biomass were rotifers followed by Cladocerans in ET and E2 and Copepods followed by rotifers in E1 and E3. Food resources were thus limited in these last two water bodies compared to others. Abiotic and biological analyses indicate that these water bodies were oligomesotrophic (E1 and E3), mesotrophic (E2) and eutrophic (ET). ET under these conditions enabled the production of a satisfactory fish yield. It is therefore recommended that, fish farmers should improve the quality of maintenance of fish ponds which together with good fertilization will generate maximum productivity.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Influence of the Quality of Maintenance of Fish Ponds on the Biomass of Zooplankton in situ in Tropical Zone (Yaoundé-Cameroon-Central Africa)
    AU  - Jeannette Prudence Dakwen
    AU  - Serge Hubert Zebaze Togouet
    AU  - Sylvie Belengfe Chinche
    AU  - Olive Vivien Noah Ewoti
    AU  - Mireille Kapso Tchouankep
    AU  - Thomas Njine
    Y1  - 2019/06/26
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ijnrem.20190403.11
    DO  - 10.11648/j.ijnrem.20190403.11
    T2  - International Journal of Natural Resource Ecology and Management
    JF  - International Journal of Natural Resource Ecology and Management
    JO  - International Journal of Natural Resource Ecology and Management
    SP  - 62
    EP  - 72
    PB  - Science Publishing Group
    SN  - 2575-3061
    UR  - https://doi.org/10.11648/j.ijnrem.20190403.11
    AB  - A comparative study of the biomass of zooplankton of four semi-intensive fish ponds found in the ecological area of Yaoundé in Cameroon was sampled for 9 months, which made it possible to evaluate the influence of the maintenance quality of the water bodies on their productivity. There were three ponds E1, E2, and E3 fertilized with organic and mineral matter, sampled from March to November 2012 on the one hand and on the other hand an experimental pond ET serving as a control, which was sampled from March to November 2014. ET was fertilized with mineral and organic matter and received particular attention during the first three months of breeding. The breeding method recommended in these ponds was the polyculture of Clarias gariepinus and Oreochromis niloticus. The samples were collected twice a month at 20 cm depth. Physico-chemical and biological analyses were measured using appropriate techniques. Zooplankton biomass remained very high in ET relative to E1, E2 and E3 (90% vs. 10%), creating an uneven profile in all water bodies. Minimum biomass values were 119 mg C / L in E1, 200 mg C / L in E2, 40 mg C / L in E3 and 781 mg C / L in ET; the maximum values being 748 mg C / L, 2643 mg C / L, 474 mg C / L and 67010 mg C / L in E1, E2, E3 and ET respectively. The largest contributors to this biomass were rotifers followed by Cladocerans in ET and E2 and Copepods followed by rotifers in E1 and E3. Food resources were thus limited in these last two water bodies compared to others. Abiotic and biological analyses indicate that these water bodies were oligomesotrophic (E1 and E3), mesotrophic (E2) and eutrophic (ET). ET under these conditions enabled the production of a satisfactory fish yield. It is therefore recommended that, fish farmers should improve the quality of maintenance of fish ponds which together with good fertilization will generate maximum productivity.
    VL  - 4
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroun

  • Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroun

  • Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroun

  • Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroun

  • Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroun

  • Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroun

  • Sections