Please enter verification code
Design and Optimization of Axial Flux Brushless DC Motor Dedicated to Electric Traction
American Journal of Electrical Power and Energy Systems
Volume 4, Issue 2-1, April 2015, Pages: 42-48
Received: Jan. 19, 2015; Accepted: Jan. 20, 2015; Published: Feb. 5, 2015
Views 3333      Downloads 270
Mariem Ben Amor, National School of Engineers of Sfax (ENIS), Sfax University, SETIT Research Unit, Sfax, Tunisia
Souhir Tounsi, National School of Electronics and Telecommunications of Sfax, Sfax University, SETIT Research Unit, Sfax, Tunisia
Mohamed Salim Bouhlel, Higher Institute of Biotechnology of Sfax (ISBS), Sfax University, SETIT Research Unit, Sfax, Tunisia
Article Tools
Follow on us
In this paper, we present an analytic model of the whole motor converter taking in account of several systemic and physical constraints. Being couple to a model of the losses of the power chain and to a model of the mass of the motor, this analytic model puts a problem of conjoined optimization of the consumption and the cost of the motor. This problem is solved by genetic algorithms method.
Electric Vehicle, Motor, Electromagnetic Converter, Design, Optimization
To cite this article
Mariem Ben Amor, Souhir Tounsi, Mohamed Salim Bouhlel, Design and Optimization of Axial Flux Brushless DC Motor Dedicated to Electric Traction, American Journal of Electrical Power and Energy Systems. Special Issue: Design, Optimization and Control of Electric Vehicles: (DOCEV). Vol. 4, No. 2-1, 2015, pp. 42-48. doi: 10.11648/j.epes.s.2015040201.16
Chaithongsuk, S., Nahid-Mobarakeh, B., Caron, J., Takorabet, N., & Meibody-Tabar, F. : Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives. Industrial Electronics, IEEE Transactions on, vol 59 no 6, p. 2484-2494, 2012.
Rahman, M. A., Osheiba, A. M., Kurihara, K., Jabbar, M. A., Ping, H. W., Wang, K., & Zubayer, H. M.: Advances on single-phase line-start high efficiency interior permanent magnet motors. Industrial Electronics, IEEE Transactions on, vol 59 no 3, p. 1333-1345, 2012.
C.C Hwang, J.J. Chang : Design and analysis of a high power density and high efficiency permanent magnet DC motor, Journal of Magnetism and Magnetic Materials, Volume 209, Number 1, February 2000, pp. 234-236(3)-Publisher: Elsevier.
MI. Chunting CHRIS: Analytical design of permanent-magnet traction-drive motors" Magnetics, IEEE Transactions on Volume 42, Issue 7, July 2006 Page(s):1861 - 1866 Digital Object Dentifier 10.1109/TMAG.2006.874511.
S.TOUNSI, R.NÉJI, F.SELLAMI: Conception d'un actionneur à aimants permanents pour véhicules électriques, Revue Internationale de Génie Électrique volume 9/6 2006 - pp.693-718.
Sid Ali. RANDI: Conception systématique de chaînes de traction synchrones pour véhicule électrique à large gamme de vitesse. Thèse de Doctorat 2003, Institut National Polytechnique de Toulouse, UMRCNRS N° 5828.
C. PERTUZA: Contribution à la définition de moteurs à aimants permanents pour un véhicule électrique routier. Thèse de docteur de l’Institut National Polytechnique de Toulouse, Février 1996.
S. TounsI, R. NEJI and F. SELLAmI: Mathematical model of the electric vehicle autonomy. ICEM2006 (16th International Conference on Electrical Machines), 2-5 September 2006 Chania-Greece, CD: PTM4-1.
R. NEJI, S. TOUNSI, F. SELLAMI: Contribution to the definition of a permanent magnet motor with reduced production cost for the electrical vehicle propulsion. Journal European Transactions on Electrical Power (ETEP), Volume 16, issue 4, 2006, pp. 437-460.
P. BASTIANI: Stratégies de commande minimisant les pertes d’un ensemble convertisseur machine alternative : application à la traction électrique. Thèse INSA 01 ISAL 0007, 2001.
G. Henriot: Traité théorique et pratique des engrenages : théorie et technologie 1. tome 1 Edition Dunod 1952.
D-H. Cho, J-K. Kim, H-K. Jung and C-G. Lee: Optimal design of permanent-magnet motor using autotuning Niching Genetic Algorithm, IEEE Transactions on Magnetics, Vol. 39, No. 3, May 2003.
Islam, M. S., Islam, R., & Sebastian, T.: Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications. Industry Applications, IEEE Transactions on, vol 47 no 1, p. 88-95, 2011.
Parasiliti, F., Villani, M., Lucidi, S., & Rinaldi, F. : Finite-element-based multiobjective design optimization procedure of interior permanent magnet synchronous motors for wide constant-power region operation. Industrial Electronics, IEEE Transactions on, vol 59 no 6, p. 2503-2514, 2012.
Mahmoudi, A., Kahourzade, S., Rahim, N. A., & Ping, H. W.: Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor. Progress In Electromagnetics Research, 124, p. 383-404, 2012.
Duan, Y., & Ionel, D. M.: A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. Industry Applications, IEEE Transactions on, vol 49 no 3, p. 1268-1275, 2013.
Liu, G., Yang, J., Zhao, W., Ji, J., Chen, Q., & Gong, W.: Design and analysis of a new fault-tolerant permanent-magnet vernier machine for electric vehicles. Magnetics, IEEE Transactions on, vol 48 no 11, p. 4176-4179, 2012.
Lee, S., Kim, K., Cho, S., Jang, J., Lee, T., & Hong, J.: Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design. Electric Power Applications, IET, vol 8 no 1, 23-28, 2014.
TOUNSI, R. NEJI and F. SELLAMI : Electric vehicle control maximizing the autonomy: 3rd International Conference on Systems, Signal & Devices (SSD’05), SSD-PES 102, 21-24 March 2005, Sousse, Tunisia.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186