Please enter verification code
Confirm
Modelling and Control of Electric Vehicle Power Train
American Journal of Electrical Power and Energy Systems
Volume 4, Issue 2-1, April 2015, Pages: 33-41
Received: Dec. 14, 2014; Accepted: Dec. 15, 2014; Published: Dec. 27, 2014
Views 3109      Downloads 219
Author
Souhir Tounsi, National School of Electronics and Telecommunications of Sfax-(SETIT): Research Unit, Sfax University, Sfax, Tunisia
Article Tools
Follow on us
Abstract
This paper describes the choice and the design of electric vehicles power train structure reducing considerably the energy consumption. Indeed The converter feeding the motor is naturally with IGBTs leading on the one hand to important losses and on the other hand to many control problems. This structure is replaced by another with electromagnetic switch leading to a strong reduction of the losses and to an increase of the electric motor control reliability. The power train contains an energy recuperation system during the deceleration phases, where the motor functions in generator. The motor is controlled by vector control method maintaining the current Id equal to zero, leading to the maintain of the current in phase with electromotive force, what also leads to the reduction of the energy consumption. A supper-capacity is added in parallel with the energy accumulator leads to an increase of the storage energy capacity. All these factors lead to the increase of the autonomy for a known stocked energy.
Keywords
Power Chain, Design, Battery, Converter, Thermal Model, Simulation
To cite this article
Souhir Tounsi, Modelling and Control of Electric Vehicle Power Train, American Journal of Electrical Power and Energy Systems. Special Issue: Design, Optimization and Control of Electric Vehicles: (DOCEV). Vol. 4, No. 2-1, 2015, pp. 33-41. doi: 10.11648/j.epes.s.2015040201.15
References
[1]
Naomitsu Urasaki, Tomonobu Senjyu and Katsumi Uezato: “A novel calculation method for iron loss resistance suitable in modelling permanent-magnet motors”, IEEE TRANSACTION ON ENERGY CONVERSION, VOL. 18. NO 1, MARCH 2003.
[2]
B. Ben Salah, A. Moalla, S. Tounsi, R. Neji, F. Sellami: “Analytic design of Permanent Magnet Synchronous motor Dedicated to EV Traction with a Wide Range of Speed Operation”, Internéational Review of Electrical Engineering (I.R.E.E), VOL 3, NO 1 January-February 2008”
[3]
Sid Ali. RANDI : Conception systématique de chaînes de traction synchrones pour véhicule électrique à large gamme de vitesse. Thèse de Doctorat 2003, Institut National Polytechnique de Toulouse, UMRCNRS N° 5828.
[4]
C. C. Chan and K. T. Chau: “An Overview of power Electronics in Electric Vehicles”, IEEE Trans. On Industrial Electronics, Vol, 44, No 1, February 1997, pp.3-13.
[5]
C. PERTUZA: “Contribution à la définition de moteurs à aimants permanents pour un véhicule électrique routier”. Thèse de docteur de l’Institut National Polytechnique de Toulouse, Février 1996.
[6]
S. TOUNSI, R. NEJI, F. SELLAMI: “Contribution à la conception d’un actionneur à aimants permanents pour véhicules électriques en vue d’optimiser l’autonomie”. Revue Internationale de Génie Electrique, Volume 9/6-2006, pp. 693-718. Edition Lavoisier.
[7]
S. Tounsi : “Modélisation et Optimisation de la Motorisation et de l’Autonomie d’un Véhicule Electrique”.Thèse de docteur de l’Ecole National d’Ingénieur de Sfax Tunisie, February 2006.
[8]
Sid Ali. RANDI: Conception systématique de chaînes de traction synchrones pour véhicule électrique à large gamme de vitesse. Thèse de Doctorat 2003, Institut National Polytechnique de Toulouse, UMRCNRS N° 5828.
[9]
S. TOUNSI, R. NEJI and F. SELLAMI : Electric vehicle control maximizing the autonomy: 3rd International Conference on Systems, Signal & Devices (SSD’05), SSD-PES 102, 21-24 March 2005, Sousse, Tunisia.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186