International Journal of Energy and Power Engineering

| Peer-Reviewed |

Modeling and Analysis of Leakage Flux and Iron Loss Inside Silicon Steel Laminations

Received: 21 October 2015    Accepted: 22 October 2015    Published: 10 November 2015
Views:       Downloads:

Share This Article

Abstract

This paper investigates the leakage flux and the iron loss generated in the laminated silicon sheets of the core or the magnetic shields of large power transformers. A verification model is well established, and proposed parabolic model (non-saturated region) and hybrid model (saturation region) to simulate the magnetic properties of the silicon steel with different angles to the rolling direction. An efficient analysis method is implemented and validated. The calculated and measured results with respect to the test models are in good agreement.

DOI 10.11648/j.ijepe.s.2016050101.17
Published in International Journal of Energy and Power Engineering (Volume 5, Issue 1-1, February 2016)

This article belongs to the Special Issue Numerical Analysis, Material Modeling and Validation for Magnetic Losses in Electromagnetic Devices

Page(s) 48-52
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Benchmark Problem 21, Modeling of Silicon Steel Laminations, Arbitrary Anisotropy, Parabolic Model, Hybrid Model

References
[1] Du Y, Cheng Z, Zhang J, Liu L, Fan Y, Wu W, Zhai Z, and Wang J, “Additional iron loss modeling inside silicon steel laminations,” IEEE International Electric Machines and Drives Conference, pp.826-831, 2009.
[2] Cheng Z, Takahashi N, Forghani B, Du Y, Zhang J, Liu L, Fan Y, Hu Q, Jiao C, and Wang J, “Large power transformer-based stray-field loss modeling and validation,” IEEE International Electric Machines and Drives Conference, pp.548-555, 2009.
[3] E. teNyenhuis, R. Girgis, and G. Mechler, “Other factors contributing to the core loss performance of power and distribution transformers,” IEEE Trans. on Power Delivery, vol., no.4, pp.648-653, October 2001.
[4] L. Krähenbühl, P. Dular, T. Zeidan, and F. Buret, “Homogenization of lamination stacks in linear magnetodynamics,” IEEE Trans. Magn., vol. 40, no.2, pp.912-915, March 2004.
[5] K. Muramatsu, T. Shimizu, A. Kameari, I. Yanagisawa, S. Tokura, O. Saito, and C. Kaido, “Analysis of eddy currents in surface layer of laminated core in magnetic bearing system using leaf edge elements,” IEEE Trans. Magn., vol. 42, no.4, pp. 883-886, April 2006.
[6] Z. Cheng, N. Takahashi, S. Yang, T. Asano, Q. Hu, S. Gao, X. Ren, H. Yang, L. Liu, and L. Gou, “Loss spectrum and electromagnetic behavior of problem 21 family,” IEEE Trans. Magn., vol.42, no.4, pp.1467-1470, 2006.
[7] Z. Cheng, N. Takahashi, B. Forghani, G. Gilbert, J. Zhang, L.Liu, Y. Fan, X. Zhang, Y. Du, J. Wang, and C. Jiao, “Analysis and measurements of iron loss and flux inside silicon steel laminations,” IEEE Trans. Magn.,45(3): 1222-1225, 2009.
[8] Z. Cheng, N. Takahashi, B. Forghani, L. Liu, Y. Fan, T. Liu, J. Zhang, and X. Wang, “3-D finite element modeling and validation of power frequency multi-shielding effect,” IEEE Trans. Magn., vol.48, 243-246, 2012.
[9] Z. Cheng, N. Takahashi, B. Forghani, Y. Du, Y. Fan, L. Liu, and H. Wang, “Effect of variation of B-H properties on both iron loss and flux in silicon steel lamination,” IEEE Trans. Magn., vol.47,1346-1349, 2011.
[10] W. Zheng, and Z. Cheng, “An inner-constrained separation technique for 3-D finite-element modeling of grain-oriented silicon steel laminations,” IEEE Trans. Magn., vol.48, no.8, pp. 2277-2283, 2012.
[11] Yong Du, Zhiguang Cheng, Zhigang Zhao, Yana Fan, Lanrong Liu, Junjie Zhang, and Jianmin Wang, “Magnetic Flux and Iron Loss Modeling at Laminated Core Joints in Power Transformers,” IEEE Trans. on Applied Superconductivity, 20(3):1878-1882, 2010.
[12] J.P. Webb and B. Forghani, “A T-Omega method using hierarchal edge elements,” IEE Proc.-Sci. Meas. Technol., vol. 142, no. 2, pp.133-141, 1995.
[13] A Di Napoli, and R Paggi, “A model of anisotropic grain-oriented steel,” IEEE Trans. Magn., vol. 23, no.5, pp. 1557-1561, July 1983.
Author Information
  • Department of Electrical Engineering, Hebei University of Engineering, Handan, Hebei Province, China

  • Department of Electrical Engineering, Hebei University of Engineering, Handan, Hebei Province, China

  • Department of Electrical Engineering, Hebei University of Engineering, Handan, Hebei Province, China

Cite This Article
  • APA Style

    Yong Du, Wanqun Zheng, Jingjun Zhang. (2015). Modeling and Analysis of Leakage Flux and Iron Loss Inside Silicon Steel Laminations. International Journal of Energy and Power Engineering, 5(1-1), 48-52. https://doi.org/10.11648/j.ijepe.s.2016050101.17

    Copy | Download

    ACS Style

    Yong Du; Wanqun Zheng; Jingjun Zhang. Modeling and Analysis of Leakage Flux and Iron Loss Inside Silicon Steel Laminations. Int. J. Energy Power Eng. 2015, 5(1-1), 48-52. doi: 10.11648/j.ijepe.s.2016050101.17

    Copy | Download

    AMA Style

    Yong Du, Wanqun Zheng, Jingjun Zhang. Modeling and Analysis of Leakage Flux and Iron Loss Inside Silicon Steel Laminations. Int J Energy Power Eng. 2015;5(1-1):48-52. doi: 10.11648/j.ijepe.s.2016050101.17

    Copy | Download

  • @article{10.11648/j.ijepe.s.2016050101.17,
      author = {Yong Du and Wanqun Zheng and Jingjun Zhang},
      title = {Modeling and Analysis of Leakage Flux and Iron Loss Inside Silicon Steel Laminations},
      journal = {International Journal of Energy and Power Engineering},
      volume = {5},
      number = {1-1},
      pages = {48-52},
      doi = {10.11648/j.ijepe.s.2016050101.17},
      url = {https://doi.org/10.11648/j.ijepe.s.2016050101.17},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ijepe.s.2016050101.17},
      abstract = {This paper investigates the leakage flux and the iron loss generated in the laminated silicon sheets of the core or the magnetic shields of large power transformers. A verification model is well established, and proposed parabolic model (non-saturated region) and hybrid model (saturation region) to simulate the magnetic properties of the silicon steel with different angles to the rolling direction. An efficient analysis method is implemented and validated. The calculated and measured results with respect to the test models are in good agreement.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Modeling and Analysis of Leakage Flux and Iron Loss Inside Silicon Steel Laminations
    AU  - Yong Du
    AU  - Wanqun Zheng
    AU  - Jingjun Zhang
    Y1  - 2015/11/10
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijepe.s.2016050101.17
    DO  - 10.11648/j.ijepe.s.2016050101.17
    T2  - International Journal of Energy and Power Engineering
    JF  - International Journal of Energy and Power Engineering
    JO  - International Journal of Energy and Power Engineering
    SP  - 48
    EP  - 52
    PB  - Science Publishing Group
    SN  - 2326-960X
    UR  - https://doi.org/10.11648/j.ijepe.s.2016050101.17
    AB  - This paper investigates the leakage flux and the iron loss generated in the laminated silicon sheets of the core or the magnetic shields of large power transformers. A verification model is well established, and proposed parabolic model (non-saturated region) and hybrid model (saturation region) to simulate the magnetic properties of the silicon steel with different angles to the rolling direction. An efficient analysis method is implemented and validated. The calculated and measured results with respect to the test models are in good agreement.
    VL  - 5
    IS  - 1-1
    ER  - 

    Copy | Download

  • Sections