| Peer-Reviewed

Adsorption of Chlorendic Acid onto Hydrophilic Fumed Titanium Dioxide (P25)

Received: 11 November 2013    Accepted:     Published: 20 December 2013
Views:       Downloads:
Abstract

The adsorption behavior of chlorendic acid (1, 4, 5, 6, 7, 7-hexachlorobicyclo-(2, 2, 1) -hept-5-ene-2, 3-dicarboxylic acid) onto hydrophilic fumed TiO2 (P-25, Degussa) in aqueous suspension was investigated. Results indicate that chlorendic acid adsorbed strongly in short times (2-5 mins) onto TiO2. Adsorption data is consistent with Langmuir-Hinshelwood isotherm model for monolayer adsorption and the shape of the isotherm indicates second order behavior. Calculated adsorption constant K, and maximum adsorbable quantity at 20oC were obtained as (0.12 ± 0.03) l/mg and (4.4 ± 0.2) mg/g TiO2 respectively. Adsorption of chlorendic acid in water onto TiO2 is exothermic.

Published in American Journal of Environmental Protection (Volume 2, Issue 6)
DOI 10.11648/j.ajep.20130206.20
Page(s) 183-187
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Adsorption, Reactive Flame Retardant, Titanium Dioxide

References
[1] HSDB. 2013. Hazardous Substances Data Bank. National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/search. Last accessed: 5/2013.
[2] P-P. Cui, L-F. Cui, L-L. Zhang, and D-F. Sun, Zeitschrift fur anorgaische und allgemeieneChemie, 2013 (in press DOI: 101002/zaac.201300141).
[3] R.C Nametz, Ind. Eng. Chem, 1967, 59, 99.
[4] T. Rajkumar, P. Sivasamy, B. Sreedhar, and C.T. Vijayakumar, Polymer Advanced Technologies, 2012, 23, 829.
[5] W.C. Ying, R.R. Bonk , and S.A. Sojka, Envir. Prog, 1987, 6, 4.
[6] A.G. Thomas, and K.L. Syres, Chem. Soc. Rev, 2010, 41, 4207.
[7] K. Honda, J. Photochem Photobiol A- Chem, 2004, 116, 63
[8] A.J. Bard, J. Photochem Photobiol A- Chem, 1979, 10, 59
[9] T.N. Fujshima, D.A. Rao, and J. Tryk, J. Photochem Photobiol. C-Photochem Rev, 2000, 1, 1.
[10] M.R. Hoffmann, S. Martin, T. Cho, W.D.W. Behnemann, Chem. Rev, 1995, 95, 69
[11] S. Vijaikumar, N. Somassundaram, C. Srinivasan, Appl Catal A-Gen, 2002, 223, 129.
[12] J-M. Hermann, Catal Today, 1999, 53, 115..
[13] J.M. Pettibone, D.M. Cwertny, M. Scherer, and V.H. Grassian, Langmuir, 2008, 24, 6659.
[14] J. Tao, T. Luttrell, J. Bysma, and M. Batzill, 2011, J. Phys Chem, 2011, 21, 2407.
[15] W. Plazinski, W. Rudzinski, W, and Plazinska, A, Adv Colloid Interfac Sci, 2009, 152, 2.
[16] L.M. Sanctuary,‘Physical chemistry’ 4th ed., Houghton Mifflin company Publishers; 2002, p 931.
[17] E.A. Dietz, N.J. Corteucci, and K.F. Singley, J. Liq Chromatogr, 1993, 16, 3331.
[18] C.H. Giles, D. Smith, and A. Huitson, J Colloid and Interface Sciences, 1974, 47, 755.
[19] C. Moreno-Castilla, Carbon, 2004, 42, 83.
[20] A.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, and G.M. Walker, Dyes and Pigments, 2008, 77, 16.
[21] S. Andinis, R. Cioffi, F. Montagnaro, F. Pisciotta, and L. Santoro, Appl Clay Sci, 2006, 31, 126.
[22] N. Boujelben, and J.B.Z. Elouear, J Hazard Mater, 2009 163, 376.
[23] M.D.C. Zenteno, R.C.A. de Freitas, R.B.A. Fernandes, M.P.F. Fontes, and C.P. Jordao, Water Air Soil Poll, 2013, 224, 1418.
[24] P.Z. Araujo, P.J. Morando, and M.A. Blesa, Langmuir, 2005, 21, 3470.
[25] D. Robert, S. Parra, C. Pulgarin, A. Krzton, and J.V. Weber, Appl surf Sci, 2000, 167, 51.
[26] Y.C. Wong, Y.S. Szelo, W.H. Cheung, G. Mckay, 2003, Langmuir 19, 7888.
[27] V.K. Gupta, B. Gupta, A. Rostogi, and S. Agarwai, J Hazard Mater, 2011, 186, 891.
[28] T.S. Anirudhan, L. Divya, J. Parvathy, Journal of Chemical Technology and Biotechnology, 2012, 88, 878-886.
[29] M. Alkan, M. Karadas, M. Dogan, O. Demirbas, Journal of Colloid and Interface Science, 2005, 291, 309-318.
Cite This Article
  • APA Style

    Ndokiari Boisa. (2013). Adsorption of Chlorendic Acid onto Hydrophilic Fumed Titanium Dioxide (P25). American Journal of Environmental Protection, 2(6), 183-187. https://doi.org/10.11648/j.ajep.20130206.20

    Copy | Download

    ACS Style

    Ndokiari Boisa. Adsorption of Chlorendic Acid onto Hydrophilic Fumed Titanium Dioxide (P25). Am. J. Environ. Prot. 2013, 2(6), 183-187. doi: 10.11648/j.ajep.20130206.20

    Copy | Download

    AMA Style

    Ndokiari Boisa. Adsorption of Chlorendic Acid onto Hydrophilic Fumed Titanium Dioxide (P25). Am J Environ Prot. 2013;2(6):183-187. doi: 10.11648/j.ajep.20130206.20

    Copy | Download

  • @article{10.11648/j.ajep.20130206.20,
      author = {Ndokiari Boisa},
      title = {Adsorption of Chlorendic Acid onto Hydrophilic Fumed Titanium Dioxide (P25)},
      journal = {American Journal of Environmental Protection},
      volume = {2},
      number = {6},
      pages = {183-187},
      doi = {10.11648/j.ajep.20130206.20},
      url = {https://doi.org/10.11648/j.ajep.20130206.20},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajep.20130206.20},
      abstract = {The adsorption behavior of chlorendic acid (1, 4, 5, 6, 7, 7-hexachlorobicyclo-(2, 2, 1) -hept-5-ene-2, 3-dicarboxylic acid) onto hydrophilic fumed TiO2 (P-25, Degussa) in aqueous suspension was investigated. Results indicate that chlorendic acid adsorbed strongly in short times (2-5 mins) onto TiO2. Adsorption data is consistent with Langmuir-Hinshelwood isotherm model for monolayer adsorption and the shape of the isotherm indicates second order behavior. Calculated adsorption constant K, and maximum adsorbable quantity at 20oC were obtained as (0.12 ± 0.03) l/mg and (4.4 ± 0.2) mg/g TiO2 respectively. Adsorption of chlorendic acid in water onto TiO2 is exothermic.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Adsorption of Chlorendic Acid onto Hydrophilic Fumed Titanium Dioxide (P25)
    AU  - Ndokiari Boisa
    Y1  - 2013/12/20
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ajep.20130206.20
    DO  - 10.11648/j.ajep.20130206.20
    T2  - American Journal of Environmental Protection
    JF  - American Journal of Environmental Protection
    JO  - American Journal of Environmental Protection
    SP  - 183
    EP  - 187
    PB  - Science Publishing Group
    SN  - 2328-5699
    UR  - https://doi.org/10.11648/j.ajep.20130206.20
    AB  - The adsorption behavior of chlorendic acid (1, 4, 5, 6, 7, 7-hexachlorobicyclo-(2, 2, 1) -hept-5-ene-2, 3-dicarboxylic acid) onto hydrophilic fumed TiO2 (P-25, Degussa) in aqueous suspension was investigated. Results indicate that chlorendic acid adsorbed strongly in short times (2-5 mins) onto TiO2. Adsorption data is consistent with Langmuir-Hinshelwood isotherm model for monolayer adsorption and the shape of the isotherm indicates second order behavior. Calculated adsorption constant K, and maximum adsorbable quantity at 20oC were obtained as (0.12 ± 0.03) l/mg and (4.4 ± 0.2) mg/g TiO2 respectively. Adsorption of chlorendic acid in water onto TiO2 is exothermic.
    VL  - 2
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Dept. of Chemistry, Faculty of Science, Rivers State University of Science and Technology, P.M.B. 5080, Port Harcourt, Nigeria

  • Sections