Treatment Performance of an Autonomous Gray Water Treatment System (SAUTEG) with the Macrophytes Thalia geniculata
American Journal of Environmental Protection
Volume 5, Issue 6, December 2016, Pages: 187-198
Received: Nov. 28, 2016; Accepted: Dec. 8, 2016; Published: Jan. 10, 2017
Views 3375      Downloads 80
Authors
Franck Yovo, Laboratory of Physical Chemistry, Faculty of Sciences and Techniques, University of Abomey-Calavi (LCP/FAST/UAC), Cotonou, Republic of Benin
Biaou Dimon, Laboratory of Physical Chemistry, Faculty of Sciences and Techniques, University of Abomey-Calavi (LCP/FAST/UAC), Cotonou, Republic of Benin
Fidèle Suanon, Laboratory of Physical Chemistry, Faculty of Sciences and Techniques, University of Abomey-Calavi (LCP/FAST/UAC), Cotonou, Republic of Benin
Martin Aina, Laboratory of Technical Sciences of Water (LSTE), Cotonou, Republic of Benin
Ignace Chabi Agani, Laboratory of Physical Chemistry, Faculty of Sciences and Techniques, University of Abomey-Calavi (LCP/FAST/UAC), Cotonou, Republic of Benin
Valentin Dieudonné Wotto, Laboratory of Physical Chemistry, Faculty of Sciences and Techniques, University of Abomey-Calavi (LCP/FAST/UAC), Cotonou, Republic of Benin
Alexis Finagnon Crépin Togbe, Laboratory of Physical Chemistry, Faculty of Sciences and Techniques, University of Abomey-Calavi (LCP/FAST/UAC), Cotonou, Republic of Benin
Article Tools
Follow on us
Abstract
The treatment of domestic wastewater and the improvement of our living environment is a matter of concern. Less costly methods are to be promoted because of the low financial power of the developing countries. In order to satisfy this requirement, here we have proposed an autonomous system for gray water treatment (SAUTEG) using the macrophytes Thalia geniculata plants. This system is composed of 75 plants/m² and purifying capacity EH equal to 8.7 x10-3 equivalent-inhabitant. Using this system, gray water (catch water: EGo and collectors of wastewater: ECo) were collected and processed (EGT and ECT) and physicochemical parameters of the gray water were determined according to the French standard. There was a significant reduction in organic pollution at the level of EGT and ECT respectively (BOD5: 93.49% - 99.04%, COD: 94.40% - 98.25%, MES: 99.99% - 99,98%), organoleptic parameters (color: 86.50% - 84.63%, Turb: 94.13% - 88.61%), trace metallic elements (Pb: 24.52% - 87.02%, Cd: 11.84% - 21.42%). There was also nutrients removal (NO3-: 96.49% -19.04%, NTK: 94.94% - 100% and PO43-: 14.69% - 55.02%). The treated water was less turbid and lighter. There was a good performance of the system regarding biological parameters (E. coli: 100%; Enterococci: 100% and thermo-tolerant Coli: 99.99%). The values were close to those reported in the literature and some meet the standards of domestic wastewater treatment. Comparative study of the results revealed that the SAUTEG purified the waters from the collector better than the gray water. Thalia geniculata plants, in the system played an important role in the reduction of nitrates and lead in domestic wastewater. This system would therefore contribute to the improvement of the environment. We are looking forward to extending this study to other pollutants and to evaluating the saturation time of the system.
Keywords
Purification System, Thalia geniculata, Pollutants, Domestic Wastewater
To cite this article
Franck Yovo, Biaou Dimon, Fidèle Suanon, Martin Aina, Ignace Chabi Agani, Valentin Dieudonné Wotto, Alexis Finagnon Crépin Togbe, Treatment Performance of an Autonomous Gray Water Treatment System (SAUTEG) with the Macrophytes Thalia geniculata, American Journal of Environmental Protection. Vol. 5, No. 6, 2016, pp. 187-198. doi: 10.11648/j.ajep.20160506.16
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
PNUD. Rapport sur le Développement Humain Durable de l’Afrique, 82 p, 2004.
[2]
C. Tchakpa. Valorisation des déchets solides ménagés comme alternative à l’utilisation des engrais chimiques de synthèse dans le maraichage à Cotonou, Thèse pour l’obtention du grade de docteur de l’Université d’Abomey-Calavi, 128 p, 2015.
[3]
N. Poiret. Odeurs impures, du corps humain à la cité (Grenoble, XVIIIe XIXe siècle), Terrain Anthropologie & sciences humaines, Collection Ethnologie de la France, Cahiers d'ethnologie de la France, pp 89-102, septembre 1998.
[4]
E. U. R. Ouedraogo. La gestion urbaine dans les pays du sud, DEA Université de Ouagadougou, 2010.
[5]
Y. Kafando. Environnement urbain et problèmes de santé à Ouagadougou, Mémoire de Maîtrise: cas du quartier Cissin, 2003/2004.
[6]
L. Monjour. Les pathologies d'origine hydrique et la potabilité de l'eau; Les Cahiers du MURS n°33 - 2ème trimestre 1997.
[7]
A. Robert. Méthodes de lutte contre les moustiques pour les particuliers, Département de biologie, Université de Winnipeg, 2003.
[8]
S. Neubert, S. Benabdallah. La réutilisation des eaux usées traitées en Tunisie, Etude et rapport d’expertise, Institut Allemand de Développement, 11/2003.
[9]
O. EL Hachemi. Traitement des eaux usées par lagunage naturel en milieu désertique (Oasis de Figuig): performances épuratoires et aspect phytoplanctoniques, Thèse présentée à la Faculté pour obtenir le grade de Docteur, Production végétale Spécialité: Ecologie végétale UFR, Novembre 2012.
[10]
F. Miss. Etude des possibilités de valorisation des produits issus de traitement des boues de vidange: cas de Yaoundé, Cameroun, Ecole Nationale d’Enseignement Supérieur d’Agronomie de Dijoin, CREPA Cameroun, p 142, 2007.
[11]
N. F. Allouche. La phytoremédiation pour la dépollution des eaux usées, Bulletin des Energies Renouvelables, N°10, décembre 2006.
[12]
CIE. L’assainissement des eaux usées, Janvier 2016.
[13]
S. Moulin, D. Rozen-Rechels, M. Stankovic. Traitement des eaux usées; atelier l’eau Qualité vs Quantité; 1 er semestre - Année 2012-2013.
[14]
A. San Miguel. Phytoremédiation des organochlorés. Etude mécanistique et fonctionnelle des capacités épuratrices du système plante-rhizosphère, Thèse pour obtenir le grade de Docteur de l’université de Grenoble, décembre 2011.
[15]
ENSA. Les macrophytes aquatiques bio indicateurs des systèmes biologiques. Intérêts et limites des indices microphysiques, Synthèse bibliographique des principales approches européennes pour le diagnostic biologique des cours d’eau. Octobre 2001.
[16]
IFREMER. La surveillance FOGEM des zones humides côtières du Languedoc-Roussillon 2000-2005.
[17]
M. P. Aina, N. M. Kpondjo, J. Adounkpe, D. Chougourou, M. Moudochirou. Study of the purification efficiencies of theirfloating macrophytes in wastewater treatment, Research Journal of chemical Sciences; Vol. 1 (3), pp. 2319-1414. Facultés des sciences et Techniques de l’eau de l’Ecole Polytechnique d’Abomey- calavi, Université d’Abomey –Calavi, Octobre 2012.
[18]
A. V. O. Akowanou. Phytoépuration des eaux usées domestiques: Evaluation des paramètres de performances par combinaison de trois macrophytes flottants. 2012.
[19]
K. R. Effebi. Lagunage anaérobie: modélisation combinant la décantation primaire et la dégradation anaerobie, Thèse de doctorat en sciences, 2009.
[20]
D. D. Mara &H. W. Pearson. Design manual for waste, W. H. O., Regional Office for Europe. 104pp, 1998.
[21]
G. Deronzier, S. Schétrite, Y. Racault, J. P. Canler, A. Liénard, A. Héduit, P. Duchène, "Traitement de l'azote dans les stations d'épuration biologique des petites collectivités", Document technique FNDAE, n°25, 2001.
[22]
M. Larakeb, L. Youcef, A. Achour. Effet de différents paramètres réactionnels sur l’élimination du zinc par adsorption sur la bentonite de Mostaghanem et sur le kaolin, Université Mohamed Khider – Biskra, Algérie, Courrier du Savoir – N°19, pp. 49-54, Mars 2015.
[23]
G. Deviller. Traitement par lagunage à haut rendement algal (LHRA) des effluents piscicoles marins recyclés: Evaluation chimique et écotoxicologique, Thèse pour l’obtention de grade de docteur de l’ Université de Montpellier I, 172 p, novembre 2003.
[24]
F. Resjek. Analyse des eaux: aspects réglementaires et techniques. Coll. Biologie technique. Science et technique de l’environnement, 360p, 2002.
[25]
M. R. Toklo, R. G. Josse, N. Topanou, A. F. C. Togbé, P. Dossou- Yovo, B. Coulomb. Caractérisation physico- chimique des lixiriats d’une d’échange: cas du lieu d’enfouissement sanitaire de Oussè – Ouidah (Sud Bénin), International Journal of Innovation and Applied Studies, Vol 13, No; pp. 921–928, Décembre 2015.
[26]
A. E. I. Nougbode, P. Sessou, A. K. Youssao, C. P. Agbangnan, D. Mama, K. C. D. Sohounhloue. Évaluation de gel d'Aloevera en feuilles comme un floculant naturel: criblage phytochimique et élimination de la turbidité des essais d'eau par coagulation floculation, Res. J. Sci., 5 (1), 9-15, 2016.
[27]
P. Vioget, C. A. Jacquered, E. Ruegg. Bilan de l’épuration vaudoise, Département de la sécurité et de l’environnement (DES); service eaux, sols et assainissement, 2011.
[28]
H. W. Pearson, D. D. Mara, S. W. Mills & D. L. Smallman. Factors determining algal population in waste stabilization ponds and the influence of algae on pond performance. Wat. Sci. Tech. 19 (12): 131-140, 1987.
[29]
D. O. Olukanni&J. J. Ducoste. Optimization of waste stabilization ponds for developing nations using computation fluid dynamics, Ecological Engineering, 37: 1878-1888, 2011.
[30]
M. Er. El Hachemi. Association de l’Ozone, des ultraviolets et des ultrasons pour le traitement d’effluents à forte charge organique, Thèse de Doctorat, Ecole Supérieure d’Ingénieurs de Chambéry, Université de Savoie, 135 p, 2005.
[31]
O. El Hachemi, H. El Halouani, M. Meziane, A. Torrens, M. Salgot, M. SBAA. Etude des performances épuratrices dans une station de traitement des eaux usees par lagunage en climat désertique (Oasis de Figuig - Maroc): aspect bactérien et organique, Rev. Microbiol. Ind. San et Environn. Vol 6, n°1, p: 84-97, 2012.
[32]
C. Volk. Contrôle de la matière organique biodégradable au cours des traitements d’oxydation et de la distribution des eaux d’alimentation. Hydrologie. Ecole Nationale des Ponts et Chaussées, 1994.
[33]
R. Gourdon, M. Kanita, M. Gautier, B. Kimi, P. Mickel. Traitement des eaux usées domestiques par une installation de filtres de roseaux à écoulement vertical C, N, P et micropolluants, Colloque International E3D, Lomé, 2016.
[34]
DRELB (Direction Régionale de l’Environnement et du Logement Bretagne). Etude d’impact du traitement des effluents urbains, Fiche de cadrage de l’autorité environnementale, 2012.
[35]
F. Yovo, B. Dimon, C. E. Azandegbe, F. Suanon, E. Sagbo, D. Mama, M. Aina. Phytoremediation: Investigation and valorization of purifying power of Thalia geniculatain for domestic wastewater treatment, Research Journal of Chemical Sciences, Vol. 5(12), 1-6, December 2015.
[36]
F. Yovo, B. Dimon, F. Suanon, C. E. Azandegbe, I. Agani, V. Wotto. Phytoremediation: Synergistic Effect of Thalia geniculata and Crassipes Eichhornia (Water Hyacinth) During Domestic Wastewater Treatment, Plant. 5 (1): 1-8.
[37]
V. Giroud. Les filtres plantés de roseaux pour le traitement des eaux pluviales, 2007
[38]
S. Yapoga, Y. B. Ossey, V. Kouamé. Phytoremediation of zinc, cadmium, copper and chrome from industrial wastewater by Eichhornia crassipes, International Journal of Conservation Science, Volume 4, Issue 1,: 81-86, January-March 2013.
[39]
J. J. Mc-Carthy, D. Wynne, T. Berman. The uptake of dissolved nitrogenous nutrients by lake Kinneret (Israel) microplancton, Limnol. Oceanogr. 27: 673-680, 1983.
[40]
M. M. Saqqar, M. B. Pescod. Modelling the performance of anaerobic wastewater stabilization ponds, Water Science and Terchnology, vol.31 (12): 171-183, 1995.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186