Preconcentration and Determination of Traces of Heavy Metals with Polymer Chelating Sorbents in the Analysis of Natural and Waste Water
American Journal of Environmental Protection
Volume 4, Issue 2, April 2015, Pages: 105-109
Received: Mar. 4, 2015; Accepted: Mar. 16, 2015; Published: Mar. 31, 2015
Views 4226      Downloads 201
Abdunnaser Mohamed Etorki, Department of Chemistry, University of Tripoli, Tripoli, Libya
Ibrahim Salem Shaban, Department of Environmental Science and Engineering, Libyan Academy, Tripoli, Libya
Article Tools
Follow on us
Monitoring the concentrations of heavy metals in natural and waste water at and below the level of their maximum permissible concentrations is an urgent environmental problem. Hence, new procedures for the preconcentration of heavy metals with their subsequent determination by different methods are required. Along with other sorbents, significant attention is attracted to polymer chelating sorbents, which provide individual or group extraction of trace elements, eliminate matrix effects, and provide high concentration factors. The effect of the various parameters such as electrochemically and chemically synthesis methods, physical oxidation state of the polymer, polymer thickness, solution pH and metal ion concentration on the adsorption, kinetics and efficiency were investigated. The results showed a vary broad concentration range of the heavy metals from (0.05 to 10 mg/L) can be adsorbed on different kinds of polymers at different pH values and different efficiently. The adsorption capacity of the polymer to different concentrations of heavy metals was evaluated as the milligram of metal ions by one gram of various forms of the polymer. The DC conductivity measurements were also employed on the solid polymer before and after adsorption of metal ions. The experimental adsorption date was fitted to different mathematical isotherms to estimate the binding constant of heavy metals with the polymer in both single and mixed ion solutions. The method provides the extraction of analytes from natural water of complex composition containing high concentrations of alkali, alkaline-earth and other elements and is characterized by rapidly, selectivity, low detection limits, and a high reproducibility of the results. The relative standard deviation is 2-4%. The technique was test with real waste water samples.
Polymers Sorbents, Heavy Metals, Preconcentration, Adsorption Isotherms, Mixed Ion Solutions, Selectivity
To cite this article
Abdunnaser Mohamed Etorki, Ibrahim Salem Shaban, Preconcentration and Determination of Traces of Heavy Metals with Polymer Chelating Sorbents in the Analysis of Natural and Waste Water, American Journal of Environmental Protection. Vol. 4, No. 2, 2015, pp. 105-109. doi: 10.11648/j.ajep.20150402.16
C. Kadirvelu, C. Faur-Brasquet, P. Le Cloirec, ''Removal of Cu(II), Pb(II) and Ni(II) by Adsorption onto activated carbon cloths'' Langmuir 16, pp. 8404–8409 (2000)
D. Sedlak, J.T. Phinney, W.W. Bedsworth, "Strongly complexed Cu and Ni in wastewater effluents and surface runoff," Environ. Sci. Technol, vol. 31, pp. . 3010– 3016, 1997.
R.A. Issac, L. Gil, A.N. Cooperman, K. Hulme, B. Eddy, M. Ruiz, K. Jacobson, C. Larson, O.C. Pancorbo, "Corrosion in drinking water distribution systems: A major contribution of copper and lead to wastewaters and effluents," Environ. Sci. Technol, vol.31, pp. 3198–3203, 1997.
M.A. Schneegurt, J.C. Jain, J.A. Menicucci Jr., S.A. Brown, K.M. Kemner, D.F. Garofalo, M.R. Qualick, C.R. Neal, C.F. Kulpa Jr., "Biomass by-products for The remediation of wastewaters contaminated with toxic metals," Environ. Sci.Technol,. vol 35, pp.3786–3791, 2001.
C.F.Poole, New trends in solid-phase extraction," Trends in Analytical Chemistry," vol.22, pp.362-373, 2003.
R. Rao, T.R.Kala and S.Danial, "Metal ion-imprinted polymers novel materials for selective recognition of inorganics," Analytical Chim Acta, vol 578, pp.105- 116, 2006.
A. Muck and A. Svatos.,"Chemical modification of polymeric microchip devices," Talanta, vol 74, pp. 333-341, 2007.
A.C.Sahayamg,"Determination of Cd, Cu, Pb, and Sb in environmental samples by ICP-AES using polyanline for separation,"Fresenius J Anal Chem, vol 362, pp.285-288,1998.
J.R.Fischer, D.Pang and T.S.Beatty, "Silica-polyamine composite materials for heavy metal ion removal, recovery and recycling. II. Metal ion separations from mine wastewater and soft metal ion extraction efficiency," Separation Science and Technology, vol 34, pp.3125-3137, 1999.
W.A.Ibrahim, L.I.AbdoAli, A.Sulaiman, M.M.Sanagi, H.Y.Abdoul-Enein, “Application of solid phase extraction for trace elements in environmental and biological samples," Critical Reviews in analytical Chemistry, vol 44, pp. 233-254, 2014.
M.A.Oskooie,M.M.H.Heravi, "Preparation and application of poly(2-aminothiophenol)MWCNTs nanocomposites for adsorption and separation of cadmium and lead ions via solid phase extraction", J. Hazard. Mater, vol 203-204, pp.93-100, 2012.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186