Testing the Degree of Biostabilization in the Refuse from Composting Plants
American Journal of Environmental Protection
Volume 3, Issue 5, October 2014, Pages: 238-243
Received: Oct. 8, 2014; Accepted: Oct. 21, 2014; Published: Oct. 30, 2014
Views 3184      Downloads 143
Authors
Antonio Gallardo Izquierdo, Department of Mechanical Engineering and Construction, Universitat Jaume I, Ave. Vicent Sos Baynat s/n, 12071 Castellón, Spain
Francisco José Colomer Mendoza, Department of Mechanical Engineering and Construction, Universitat Jaume I, Ave. Vicent Sos Baynat s/n, 12071 Castellón, Spain
Eduard Cirstea, Facultatea De Ingineria Mediului si Biotehnologii, Universitatea “Valahia” Din Târgoviste.Str. N. T Radian, BI. T1 sc. A. et 1, ap 3, 130062. Dâmbovita, Romania
Natalia Edo Alcón, Department of Mechanical Engineering and Construction, Universitat Jaume I, Ave. Vicent Sos Baynat s/n, 12071 Castellón, Spain
Joan Esteban Altabella, Department of Mechanical Engineering and Construction, Universitat Jaume I, Ave. Vicent Sos Baynat s/n, 12071 Castellón, Spain
Article Tools
Follow on us
Abstract
In composting plants, aerobic fermentation could not to be complete and therefore, the fate of unstabilyzed wastes from the compost refining, uses to be landfill. This fact provokes an extra biogas generation in landfills, which contributes to greenhouse effect. In this work, the refuse of compost refining process has been subjected to an anaerobic fermentation. For that, in order to analyze their biogas generation, three samples of different composting plants have been selected. In one of these plants, the amount of biogas generation has been considerable, which involves a not complete stabilization of biowaste in the composting process.
Keywords
Biomethanization, Biowaste, Compost, Refine, Refuse
To cite this article
Antonio Gallardo Izquierdo, Francisco José Colomer Mendoza, Eduard Cirstea, Natalia Edo Alcón, Joan Esteban Altabella, Testing the Degree of Biostabilization in the Refuse from Composting Plants, American Journal of Environmental Protection. Vol. 3, No. 5, 2014, pp. 238-243. doi: 10.11648/j.ajep.20140305.15
References
[1]
Directiva 2008/98/CE del Parlamento Europeo y del Consejo de 19 de noviembre de 2008 sobre los residuos y por la que se derogan determinadas Directivas. (DOUE L 312, de 22.11.2008).
[2]
Directiva 1999/31/CE del Consejo, de 26 de abril de 1999, relativa al vertido de residuos (DOCE L 182, de 16.7.1999).
[3]
Eurostat news release nº 33/2013: http://ec.europa.eu/eurostat Access 04/2014.
[4]
A P. Economopoulos (2010) Technoeconomic aspects of alternative municipal solid wastes treatment methods, Waste Management , 30, pp. 707–715.
[5]
J. Nithikul, O.P. Karthikeyan, C. Visvanathan (2011) Reject management from a Mechanical Biological Treatment plant in Bangkok, Thailand. Resources, Conservation and Recycling, 55, pp. 417–422.
[6]
C. Montejo, P. Ramos, C. Costa, M.C. Márquez (2010) Analysis of the presence of improper materials in the composting process performed in ten MBT plants. Bioresource Technology, 101, pp. 8267–8272.
[7]
D. Bernad-Beltrán (2013) Integración de la metodología de Análisis de Ciclo de Vida (ACV) y Sistemas de Información Geográfica (SIG) para la evaluación ambiental de sistemas de gestión de residuos. Doctoral Thesis. Universitat Jaume I. Spain. Spanish.
[8]
JRC (2011). Supporting Environmentally Sound Decisions for Bio-Waste Management. –A practical guide to Life Cycle Thinking (LCT) and Life Cycle Assessment (LCA) in the context of bio-waste management. JRC Scientific and Technical Reports. European Union. Joint Research Centre (JRC). Institute for Environment and Sustainability (IES).
[9]
C. Cavinato, D. Bolzonella, P. Pavan, F. Fatone, F. Cecchi (2013) Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot and full-scale reactors, Renewable Energy, 55, pp. 260-265.
[10]
O. Buenrostro, S. Cram, G. Bernache, G. Bocco (2000) La digestión anaerobia como alternativa de tratamiento a los residuos sólidos orgánicos generados en los mercados municipales. Revista Internacional de Contaminación Ambiental, 16(1), pp. 19­26
[11]
R.H. Clark, R.E. Speece (1989) The pH tolerance of anaerobic digestion. Advanced water pollution research. Int. Conf. 5th, 27/1-27/14
[12]
J.J. Lay, Y.Y. Li, T. Noike (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion, Water Research, 31(10), pp. 1518-1524
[13]
Q. Aguilar-Virgen, S. Ojeda-Benítez, P. Taboada-González, M. Quintero-Núñez (2012) Estimación de las constantes k y L0 de la tasa de generación de biogás en sitios de disposición final en Baja California, México. Revista Internacional de Contaminación Ambiental, 28, pp. 43-49.
[14]
M. Zamorano, J. I. Pérez, I. Aguilar, A. Ramos (2007) Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain, Renewable and Sustainable Energy Reviews, 11, pp. 909–922
[15]
[M. Krishania, V. Kumar, V. Kumar Vijay, A. Malik (2013) Analysis of different techniques used for improvement of biomethanation process: A review, Fuel, 106, pp. 1-9.
[16]
L. Pastor, L. Ruiz, A. Pascual, B. Ruiz (2013) Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production, Applied Energy, 107, pp. 438-445.
[17]
V. Talyan, R.P. Dahiya, S. Anand, T.R. Sreekrishnan (2007) Quantification of methane emission from municipal solid waste disposal in Delhi, Resources, Conservation & Recycling, 50, pp. 240-259.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186