Earth Sciences

| Peer-Reviewed |

Sandstone-Shale Geochemistry of Miocene Surma Group in Bandarban Anticline, SE Bangladesh: Implications for Provenance, Weathering, and Tectonic Setting

Received: 27 October 2019    Accepted: 23 November 2019    Published: 14 February 2020
Views:       Downloads:

Share This Article

Abstract

The present study analyzes the geochemical composition of sandstone and shale of the Miocene Surma Group to decipher the provenance, tectonic settings and paleoweathering condition of source area in the Bandarban Anticline which is at the western margin of Indo-Burmese Hill Ranges. Statistical empirical index of chemical weathering of the sediments that have been extracted by the Principal Component Analysis (PCA) is used to understand the weathering profile of the sediments of the study area. The PCA of the geochemical composition yields three principal components (PC–1, PC–2, and PC–3), which capture total variance 52.83%, 17.58% and 6.94%, respectively. The PC–1 shows the loss of SiO2 during weathering of preexisting source rocks; PC–2 reveals the enrichment of Na2O, CaO, and P2O5 due to leeching and carried by groundwater during weathering; highest loadings with MnO and Cr shows in PC–3 due to redox environment during early diagenetic of marine sediments. The MFW and A–CN–K diagrams show an intense weathering trend, and backward trend of the MFW diagram and the major elements provenance discriminant diagram refers to the mature polycyclic quartzes provenance and originated dominantly from felsic to intermediate igneous rocks. The trend of the SiO2/Al2O3–Na2O/K2O shows the hydraulic sorting effect and sediments were originated primarily from a recycled sedimentary provenance. The CIA (67.68–80.89), ICV (0.60–1.29, avg. 0.83) and K2O/Na2O ratios show a moderate to high maturity of the sediments and is derived from both weak and intensively weathered source rocks. Discriminate diagrams related to tectonic provenance refer to the deposit of the sediment dominantly under the influence of collision (active continental collision, compression) and mature sediment derived to the depositional basin after upliftment of the source areas after that collision.

DOI 10.11648/j.earth.20200901.15
Published in Earth Sciences (Volume 9, Issue 1, February 2020)
Page(s) 38-51
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Geochemistry, Provenances, Weathering, Tectonic Settings, Miocene Surma Group

References
[1] Hayashi, K., Fujisawa, H., Holland, H., Ohmoto, H. (1997) Geochemistry of 1.9Ga sedimentary rock from northern Labrador Canada. Geochemica et cosmochimica Acta, 61 (19): 4115-4137. DOI: 10.1016/S0016-7037(97)00214-7.
[2] Bookhagen, B., Thiede, R. C., Strecker, M. R. (2005) Late Quaternary intensified monsoon phases control landscape evolution in northwest Himalaya. Geology 33 (2): 149-152. https://doi.org/10.1130/G20982.1.
[3] Singh, A., Debajyoti, P., Sinha, R., Thomsen, K. J., Gupta, S. (2016) Eochemistry of Buried river sediment from Ghaggar Plains NW India: multi-proxy records of variations in provenance, paleoclimate and paleovegetation patterns in the Late Quaternary. Palaeogeography Palaeoclimatology Palaeoecology, 449: 85-100. https://doi.org/10.1016/j.palaeo.2016.02.012.
[4] Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., Ryberg, P. T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting: Geological Society of America Bulletin, 94: 222-235. Doi: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2.
[5] Nesbitt, H. W., Young, G. M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, 299: 715–717.
[6] Nesbitt, H. W. and Young, G. M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48: 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3.
[7] Bhatia, M. R. (1983) Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91: 611–627. https://doi.org/10.1086/628815.
[8] Roser, B. P., Korsch, R. J. (1988) Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119–139. https://doi.org/10.1016/0009-2541(88)90010-1.
[9] McCann, T. (1991) Petrological and Geochemical determinations of provenance in southern Welsh Basin. In: A. C. Morton, S. P., Todd and P. D. W. Haughton (editors), Developments in Sedimentary provenance. Geological Socity Special Publication, 57: 215-230.
[10] Condie K. C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales, Journal of Chemical Geology. 104: 1–37. https://doi.org/10.1016/0009-2541(93)90140-E.
[11] McLennan, S. M., Hemming, S., McDaniel, D. K., Hanson, G. N. (1993) Geochemical approaches to sedimentation, provenance and tectonics, in Johnsson, M.J., Basu, A. (eds.): Geological Society of America, Special Papers 285: 21–40. http://dx.doi.org/10.1130/SPE284-p21.
[12] Nesbitt, H. W. and Young, G. M. (1996) Petrogenesis of sedi- ments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 43: 341–358.
[13] Cullers, R. L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies: Lithos, 51: 181–203. https://doi.org/10.1016/S0024-4937(99)00063-8.
[14] Dickinson, W. R., Suczek, C. A. (1979) Plate tectonics and sandstone compositions: American Association of Petroleum Geologist, 63: 2164–2182.
[15] Bhatia, M. R., Crook, K. A. W. (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins: Contributions to Mineralogy and Petrology, 92: 181–193. 10.1007/BF00375292.
[16] Roser, B. P., Korsch, R. J. (1986) Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio: Journal of Geology, 94: 635–650. https://doi.org/10.1086/629071.
[17] McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Ac 54: 2015–2050. DOI: 10.1016/0016-7037(90)90269-Q.
[18] McCulloch, M. T., Wasserburg G. J. (1978) Sm-Nd and Rb-Sr Chronology of the continental crust formation, Science, 200: 1003-1011, DOI: 10.1126/science.200.4345.1003.
[19] Pettijohn, F. J., Potter, P. E., Siever, R. (1975) Sand and Sandstones: New York, Springer-Verlag. Rollinson, H. R., 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation: United Kingdom, Longman, 352 p.
[20] Harnois, L. (1988) The CIW index: A new chemical index of weathering: Sedimentary Geology, 55: 319–322. https://doi.org/10.1016/0037-0738(88)90137-6.
[21] Taylor, S. R., McLennan, S. M. (1985) The continental crust: its composition and evolution: Oxford, Blackwell, 312 p.
[22] Cox, R., Low, D. R., Cullers, R. L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, 59 (14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9.
[23] Rahman M. J. J., Suzuki, S. (2007) Geochemistry of sandstone from the Miocene Surma Group, Bengal Basin, Bangladesh: Implication for provenance, Techtonic setting and weathering. Geochemical Journal, 41: 415-428. https://doi.org/10.2343/geochemj.41.415.
[24] Rahman, M. J. J., McCann, T. (2012) Diagenetic history of the Surma Group sandstones (Miocene) in the Surma Basin, Bangladesh Journal of Asian Earth Sciences 45: 65–78. https://doi.org/10.1016/j.jseaes.2011.09.019.
[25] Hossain, H. M. Z., Roser B. P., Kimura J. I. (2010) Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: Provenance and source area weathering. Journal of Sedimentary Geology. 228: 171–183. DOI: 10.1016/j.sedgeo.2010.04.009.
[26] Roy D. and Roser B. P. (2012) Geochemistry of the Tertiary sequence in the Shahbajpur-1 well, Hatia Trough, Bengal Basin, Bangladesh: Provenance, source weathering and province affinity, Journal of Life and Earth Science. 7: 1–13. http://dx.doi.org/10.3329/jles.v7i0.20115.
[27] Haque, Md. M. Roy, M. K. (2016) Petrography and Geochemistry of Miocene Sandstone, Bandarban Anticline, Bangladesh: Implication for Provenance and Tectonic Settings. Journal of Life and Earth Sciences, 11: 45-57.
[28] Najman, Y., Allen, R., Willett, E. A. F., Carter, A., Barfod, D., Garzanti, E., Wijbrans, J., Bickle, M. J., Vezzoli, G., Ando, S., Oliver, G., Uddin, M. J. (2012) The record of Himalayan erosion preserved in the sedimentary rocks of the Hatia Trough of the Bengal Basin and the Chittagong Hill Tracts, Bangladesh. Basin Research 24: 499–519. doi: 10.1111/j.1365-2117.2011.00540.x.
[29] Ohta, T., Arai, H. (2007) Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering. Chemical Geology, 240: 280–297. https://doi.org/10.1016/j.chemgeo.2007.02.017.
[30] Ohta, T. (2004) Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato Basin, SW Japan: implication of factor analysis to sorting effects and provenance signatures. Sedimetary Geology, 171: 159–180. https://doi.org/10.1016/j.sedgeo.2004.05.014.
[31] Verma, S. P., Armstrong-Altrin, J. S. (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins, Chemical Geology, doi: 10.1016/j.chemgeo.2013.07.014.
[32] Toulkeridis, T., Clauer, N., Goldstein, S. L., Kröner, A., Reimer, T. and Todt, W. (1999) Characterization, provenance, and tectonic setting of Fig Tree greywackes from the Archaean Barberton Greenstone Belt, South Africa. Journal Sedimentary Geology, 124: 113-129. DOI: 10.1016/S0037-0738(98)00123-7.
[33] Haque, Md. M., Roy, M. K., Joly, N. S. and Roy. P. J. (2010) Sequences Stratigraphy of the Surma Group of Rocks, Bandarban Anticline, Chittagong Hill Tracts, Bangladesh. International Journal of Engineering and Earth sciences, 3 (3) 341-356.
[34] Lindsay, J., Holliday, D., Hulbert, A. (1991) Sequence stratigraphy and the evolution of the Ganges–Brahmaputra delta complex. American Association of Petroleum Geologists Bulletin 75, 1233–1254.
[35] Dewey, J. F., Cande, S., Pitman, W. (1989) Tectonic evolution of the Indian/Eurasian collision zone. Ecologae Geologicae Helvetiae 82 (3): 717–734.
[36] Beck, R., Burbank, D., Sercombe, W., Riley, G., Barndt, J., Berry, J., Afzal, F., Khan, A., Jurgen, H., Metje, J., Cheema, A., Shafigue, N., Lawrence, R., Asif Khan, M. (1995) Stratigraphic evidence for an early collision between north–west India and Asia. Nature 373: 55–58.
[37] Najman, Y. M. R., Pringle, M. S., Johnson, M. R. W., Robertson, A. H. F. (1997) Laser 40Ar/39Ar dating of single detrital muscovite grains from early foreland-basin sedimentary deposits in India: implications for early Himalayan evolution. Geology 25 (6): 535–538. 10.1130/0091-7613(1997)025<0535:LAADOS>2.3.CO;2.
[38] Curray, J., Emmel, F. J., Moore, D. G., Raitt, R. W. (1982) Structure, Tectonics and Geological History of the North–East Indian Ocean. The Ocean Basins and Margins, The Indian Ocean, 6: 399–450. 10.1007/978-1-4615-8038-6_9.
[39] Steckler M. S., Akhter, S. H., Seeber, L. (2008) Collision of the Ganges–Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard Earth and Planetary Science Letters 273: 367–378. https://doi.org/10.1016/j.epsl.2008.07.009.
[40] Curray, J. (2014) The Bengal Depositional System: From rift to orogeny Marine Geology, 352: 59–69. 10.1016/j.margeo.2014.02.001.
[41] Najman, Y., Bickle, M., BouDagher-Fadel, M., Carter, A., Garzanti, E., Paul, M., Wijbrans, J., Willett, E., Oliver, G., Parrish, R., Akhter, H., Allen, R., Ando, S., Christy, E., Reisberg, L., Vezzoli, G. (2008) The Paleogene record of Himalayan erosion, Bengal Basin, Bangladesh. Earth and Planetary Science Letters 273: 1–14. https://doi.org/10.1016/j.epsl.2008.04.028.
[42] Alam, M., Alam, M. A., Curray, J. R., Chowdhury, M. L., Gani, M. R. (2003) An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin fill history. Sedimentary Geology, 155: 179-208. https://doi.org/10.1016/S0037-0738(02)00180-X.
[43] Mukherjee, A., Fryar, A. E., Thomas, W. A. 2009. Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh, Journal of Asian Earth Sciences 34: 227–244. doi: 10.1016/j.jseaes.2008.05.011.
[44] Uddin, A., Lundberg, N. (1999) A palaeo-Brahmaputra? Subsurface lithofacies analysis of Miocene deltaic sediments in the Himalayan–Bengal system, Bangladesh. Sedimentary Geology, 123: 239–254. DOI: 10.1111/j.1365-2117.2011.00540.x.
[45] BAPEX 1995. Petroleum geology of Bangladesh. Core Lab. Rep. 139 pp.
[46] Rahman, M. J. J., Faupl, P., Alam, M. M. (2009) Depositional facies of the subsurface Neogene Surma group in the Sylhet trough of the Bengal Basin, Bangladesh: record of tidal sedimentation. International Journal of Earth Sciences 98: 1971–1980. https://doi.org/10.1007/s00531-008-0347-7.
[47] Johnson, S. Y. and Alam, A. M. N. (1991) Sedimentation and tectonics of the Sylhet trough, Bangladesh. Geological Society of American Bulletin 103: 1513–1527. doi.org/10.1130/0016-7606(1991)103<1513:SATOTS>2.3.CO;2.
[48] Rollinson, H. R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation: United Kingdom, Longman, 352 p.
[49] Bock, B., McLennan S. M., Hanson, G. N. (1998) Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology, 45: 635-655. https://doi.org/10.1046/j.1365-3091.1998.00168.x.
[50] Madhavaraju, J., Lee, Y. I. (2010) Influence of Deccan volcanism in the sedimentary rocks of Late Maastrichtian-Danian age of Cauvery basin South-eastern India: constraints from geochemistry. Current Science, 98: 528-537.
[51] Rudnick R. L., Gao S. (2003) Composition of the continental crust. Treatise of Geochemistry, 3: 1-64. DOI: 10.1016/B0-08-043751-6/03016-4.
[52] Bauluz, B., Mayayo, M. J., Fernandez-Nieto, C., Gonzalez-Lopez, J. M. (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology, 168: 135-150. https://doi.org/10.1016/S0009-2541(00)00192-3.
[53] Das, B. K., AL-Mikhlafi, A. S., Kaur, P. (2006) Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting: Journal of Asian Earth Sciences, 26, 649-668. DOI: 10.1016/j.jseaes.2005.01.005.
[54] Akarish A. I. M., El-Gohary A. M. (2008) Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: implications for provenance and tectonic setting. Journal of African Earth Science 52: 43–54. https://doi.org/10.1016/j.jafrearsci.2008.04.002.
[55] Ahmad, I., Chandra, R. (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India, Journal of Asian Earth Sciences Volume 66: 73-89, https://doi.org/10.1016/j.jseaes.2012.12.029.
[56] Jin Z, Li F, Cao J, Wang S, Yu. J. (2006) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting and catchment weathering. Geomorphology 80: 147–163. DOI: 10.1016/j.geomorph.2006.02.006.
[57] Feng, R. and Kerrich, R. (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochim. Cosmochim. Acta, 54: 1061–1081. https://doi.org/10.1016/0016-7037(90)90439-R.
[58] Garver, J. I., Royce, P. R. and Smick, T. A. (1996) Chromium and nickel in shale of the Taconic Foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J. Sed. Res., 66: 100–106.
[59] Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P. and Ramasamy, S. (2004) Geochemistry of sandstones from the upper Mio- cene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74: 285–297. https://doi.org/10.1306/082803740285.
[60] Nesbitt, H. W. Young, G. M. (1989) Formation and diagenesis of weathering profile: Journal of Geology, 97: 129–147. https://doi.org/10.1086/629290.
[61] Nesbitt, H. W., Markovics, G. and Price, R. G. (1980) Chemical processes affecting alkalis and alkaline earths during con- tinental weathering. Geochim. Cosmochim. Acta, 44: 1659–1666. https://doi.org/10.1016/0016-7037(80)90218-5.
[62] Railsback, L. B. (2003) An earth scientist’s periodic table of the elements and their ions. Geology, 31: 737–740. https://doi.org/10.1130/G19542.1.
[63] Nesbitt, H. W. and Markovics, G. (1997) Weathering of grano- dioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geo- chim. Cosmochim. Acta, 61: 1653–1670. https://doi.org/10.1016/S0016-7037(97)00031-8.
[64] White, A. F., Bullen, T. D., Schulz, M. S., Blum, A. E., Hunting- ton, T. G. and Peters, N. E. (2001) Differential rates of feld- spar weathering in granitic regoliths. Geochim. Cosmochim. Acta, 65: 847–869. https://doi.org/10.1016/S0016-7037(00)00577-9.
[65] Duzgoren-Aydin, N. S., Aydin, A. and Malpas, J. (2002) Re- assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Eng. Geol., 63: 99–119. https://doi.org/10.1016/S0013-7952(01)00073-4.
[66] Girty, G. H., Marsh, J., Meltzner, A., McConnell, J. R., Nygren, D., Nygren, J., Prince, G. M., Randall, K., Johnson, D., Heitman, B. and Nielsen, J. (2003) Assessing changes in elemental mass as a result of chemical weathering of granodiorite in a Mediterranean (hot sum- mer) climate. Journal of Sedimentary Research, 73: 434–443. 10.1306/091802730434.
[67] Turner, B. F., Stallard, R. F. and Brantley, S. L. (2003) Investi- gation of in situ weathering of quartz diorite bedrock in the Rio Lcacos basin, Luquillo Experimental Forest, Puerto Rico. Chem. Geol., 202: 313–341. https://doi.org/10.1016/j.chemgeo.2003.05.001.
[68] Argast, S., Donnelly, T. W. (1987) The chemical discrimi- nation of clastic sedimentary components. Journal of Sedimentary Petrology, 57: 813–823. https://doi.org/10.1306/212F8C6F-2B24-11D7-8648000102C1865D.
[69] Johnsson, M. J. (1993) The system controlling the composition of clastic sediments. In: Processes Controlling the Compo- sition of Clastic Sediments (Eds M. J. Johnsson and A. Basu), Geol. Soc. Am. Spec. Pap., 284: 1–19. https://doi.org/10.1130/SPE284-p1.
[70] Nesbitt, H. W., Young, G. M. (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 43: 341–358.
[71] Nesbitt, H. W., Young, G. M., McLennan, S. M. and Keays, R. R. (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol., 104: 525–542. https://doi.org/10.1086/629850.
[72] Dekayir, A., El-Maataoui, M. (2002) Mineralogy and geochemistry of supergene alteration of an alkali basalt from the Middle Atlas, Morocco. Journal of African Earth Science, 32: 619–633.
[73] Rudnick, R. L., Tomascak, P. B., Njo, H. B., Gardner, L. R. (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chemical Geology 212: 45–57. https://doi.org/10.1016/j.chemgeo.2004.08.008.
[74] Aitchison, J. (1986) The Statistical Analysis of Compositional Data. Chapman & Hall, London. 416 pp.
[75] Von Eynatten, H., Barceló-Vidal, C., Pawlowsky-Glahn, V. (2003) Modelling compositional change: the example of chemical weathering of granitoid rocks. Math. Geol. 35: 231–251. https://doi.org/10.1023/A:1023835513705.
[76] LaFleche, M. R. and Camire, G. (1996) Geochemistry and provenance of metasedimentary rocks from the Archean Golden Pond sequence (Casa Berardi mining district, Abitibi subprovince). Can. Journal of Earth Science, 33: 676–690. https://doi.org/10.1139/e96-051.
[77] Fedo C. M., Nesbitt H. W., Young G. M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rock sand paleosols, with implications for paleoweathering conditions and provenance, journal of Geology. 23: 921–924. DOI: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
[78] Armstrong-Altrin, J. S., Verma, S. P. (2005) Critical evaluation of six tectonic setting discrim-ination diagrams using geochemical data of Neogene sediments from known tectonicsettings. Sedimentary Geology 177: 115–129. doi: 10.1016/j.sedgeo.2005.02.004.
[79] Ohta, T. (2008) Measuring and adjusting the weathering and hydraulic sorting effects for rigorous provenance analysis of sedimentary rocks: a case study from the Jurassic Ashikita Group, south-west Japan Sedimentology 55: 1687–1701, doi: 10.1111/j.1365-3091.2008.00963.x.
[80] Wronkiewicz, D. J., Condie, K. C. (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochim. Cosmochim. Acta, 51: 2401-2416. https://doi.org/10.1016/0016-7037(87)90293-6.
[81] Roser, B. P., Cooper, R., Nathan, S., Tulloch, A. J. (1996) Reconnaissance sandstone geochemistry, provenance and tectonic setting of the Lower Palaeozoic terranes of the West Coast an Nelson, New Zealand. New Zealand. J. Geol. Geophys., 39: 1-16. https://doi.org/10.1080/00288306.1996.9514690.
Author Information
  • Department of Geology and Mining, University of Rajshahi, Rajshahi, Bangladesh

  • Department of Geology and Mining, University of Rajshahi, Rajshahi, Bangladesh

Cite This Article
  • APA Style

    Md. Masidul Haque, Mrinal Kanti Roy. (2020). Sandstone-Shale Geochemistry of Miocene Surma Group in Bandarban Anticline, SE Bangladesh: Implications for Provenance, Weathering, and Tectonic Setting. Earth Sciences, 9(1), 38-51. https://doi.org/10.11648/j.earth.20200901.15

    Copy | Download

    ACS Style

    Md. Masidul Haque; Mrinal Kanti Roy. Sandstone-Shale Geochemistry of Miocene Surma Group in Bandarban Anticline, SE Bangladesh: Implications for Provenance, Weathering, and Tectonic Setting. Earth Sci. 2020, 9(1), 38-51. doi: 10.11648/j.earth.20200901.15

    Copy | Download

    AMA Style

    Md. Masidul Haque, Mrinal Kanti Roy. Sandstone-Shale Geochemistry of Miocene Surma Group in Bandarban Anticline, SE Bangladesh: Implications for Provenance, Weathering, and Tectonic Setting. Earth Sci. 2020;9(1):38-51. doi: 10.11648/j.earth.20200901.15

    Copy | Download

  • @article{10.11648/j.earth.20200901.15,
      author = {Md. Masidul Haque and Mrinal Kanti Roy},
      title = {Sandstone-Shale Geochemistry of Miocene Surma Group in Bandarban Anticline, SE Bangladesh: Implications for Provenance, Weathering, and Tectonic Setting},
      journal = {Earth Sciences},
      volume = {9},
      number = {1},
      pages = {38-51},
      doi = {10.11648/j.earth.20200901.15},
      url = {https://doi.org/10.11648/j.earth.20200901.15},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.earth.20200901.15},
      abstract = {The present study analyzes the geochemical composition of sandstone and shale of the Miocene Surma Group to decipher the provenance, tectonic settings and paleoweathering condition of source area in the Bandarban Anticline which is at the western margin of Indo-Burmese Hill Ranges. Statistical empirical index of chemical weathering of the sediments that have been extracted by the Principal Component Analysis (PCA) is used to understand the weathering profile of the sediments of the study area. The PCA of the geochemical composition yields three principal components (PC–1, PC–2, and PC–3), which capture total variance 52.83%, 17.58% and 6.94%, respectively. The PC–1 shows the loss of SiO2 during weathering of preexisting source rocks; PC–2 reveals the enrichment of Na2O, CaO, and P2O5 due to leeching and carried by groundwater during weathering; highest loadings with MnO and Cr shows in PC–3 due to redox environment during early diagenetic of marine sediments. The MFW and A–CN–K diagrams show an intense weathering trend, and backward trend of the MFW diagram and the major elements provenance discriminant diagram refers to the mature polycyclic quartzes provenance and originated dominantly from felsic to intermediate igneous rocks. The trend of the SiO2/Al2O3–Na2O/K2O shows the hydraulic sorting effect and sediments were originated primarily from a recycled sedimentary provenance. The CIA (67.68–80.89), ICV (0.60–1.29, avg. 0.83) and K2O/Na2O ratios show a moderate to high maturity of the sediments and is derived from both weak and intensively weathered source rocks. Discriminate diagrams related to tectonic provenance refer to the deposit of the sediment dominantly under the influence of collision (active continental collision, compression) and mature sediment derived to the depositional basin after upliftment of the source areas after that collision.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Sandstone-Shale Geochemistry of Miocene Surma Group in Bandarban Anticline, SE Bangladesh: Implications for Provenance, Weathering, and Tectonic Setting
    AU  - Md. Masidul Haque
    AU  - Mrinal Kanti Roy
    Y1  - 2020/02/14
    PY  - 2020
    N1  - https://doi.org/10.11648/j.earth.20200901.15
    DO  - 10.11648/j.earth.20200901.15
    T2  - Earth Sciences
    JF  - Earth Sciences
    JO  - Earth Sciences
    SP  - 38
    EP  - 51
    PB  - Science Publishing Group
    SN  - 2328-5982
    UR  - https://doi.org/10.11648/j.earth.20200901.15
    AB  - The present study analyzes the geochemical composition of sandstone and shale of the Miocene Surma Group to decipher the provenance, tectonic settings and paleoweathering condition of source area in the Bandarban Anticline which is at the western margin of Indo-Burmese Hill Ranges. Statistical empirical index of chemical weathering of the sediments that have been extracted by the Principal Component Analysis (PCA) is used to understand the weathering profile of the sediments of the study area. The PCA of the geochemical composition yields three principal components (PC–1, PC–2, and PC–3), which capture total variance 52.83%, 17.58% and 6.94%, respectively. The PC–1 shows the loss of SiO2 during weathering of preexisting source rocks; PC–2 reveals the enrichment of Na2O, CaO, and P2O5 due to leeching and carried by groundwater during weathering; highest loadings with MnO and Cr shows in PC–3 due to redox environment during early diagenetic of marine sediments. The MFW and A–CN–K diagrams show an intense weathering trend, and backward trend of the MFW diagram and the major elements provenance discriminant diagram refers to the mature polycyclic quartzes provenance and originated dominantly from felsic to intermediate igneous rocks. The trend of the SiO2/Al2O3–Na2O/K2O shows the hydraulic sorting effect and sediments were originated primarily from a recycled sedimentary provenance. The CIA (67.68–80.89), ICV (0.60–1.29, avg. 0.83) and K2O/Na2O ratios show a moderate to high maturity of the sediments and is derived from both weak and intensively weathered source rocks. Discriminate diagrams related to tectonic provenance refer to the deposit of the sediment dominantly under the influence of collision (active continental collision, compression) and mature sediment derived to the depositional basin after upliftment of the source areas after that collision.
    VL  - 9
    IS  - 1
    ER  - 

    Copy | Download

  • Sections