Please enter verification code
On the Surface Independent Signals Within the ENSO Events
Earth Sciences
Volume 7, Issue 3, June 2018, Pages: 124-137
Received: May 16, 2018; Accepted: May 31, 2018; Published: Jun. 13, 2018
Views 2160      Downloads 350
Mingqiang Fang, Ocean Remote Sensing Institute, Ocean University of China, Qingdao, China
Article Tools
Follow on us
By analyzing the two types of El Niño Southern-Oscillation (ENSO) indices, i.e., the Central Pacific (CP) type index and the Eastern Pacific (EP) type index by Ren and Jin (2011), this study finds that the low correlation between the two types of indices by some previous studies should be reconsidered. Then based on previous ideas of the unified Niño index systems, the new ocean surface regions for the CP and EP El Niño indices’ calculation are defined. The features of the new CP and EP El Niño indices are consistent with sea surface temperature anomaly (SSTA) evolution along the Pacific equator. This study suggests that, concerning the El Niño characteristics, the CP and EP El Niño indices are not necessarily independent of each other; but their differences are almost absolutely independent of the unified Niño region SSTA. The results quantitatively confirm the relationship between the Trans-Niño Index (TNI) and Niño 3.4 indices (which are nearly independent of each other and provide different flavors for each El Niño event). Results presented here contribute to a better understanding of the nature of the El Niño events.
Unified Niño Regions, Thermal Centroid, ENSO, Central Pacific, Eastern Pacific
To cite this article
Mingqiang Fang, On the Surface Independent Signals Within the ENSO Events, Earth Sciences. Vol. 7, No. 3, 2018, pp. 124-137. doi: 10.11648/
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Ashok, K., S. K. Behera, S. A. Rao, H. Weng and T. Yamagata, 2007. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007, doi: 10. 1029/2006JC003798.
Banholzer, S., and S. Donner, 2014. The influence of different El Niño types on global average temperature, Geophys. Res. Lett., 41, 2093–2099, doi: 10.1002/2014GL059520.
Bejarano L. and F. F. Jin, 2008. Coexistence of Equatorial Coupled Modes of ENSO. J. Climate, 21, 3051–3067. doi:
Cai W., A. Santoso, G Wang, S. W. Yeh, S. I. I An, K. Cobb, M. Collins, E. Guilyardi, F. F. Jin, J. S. Kug, M. Lengaigne, M. J. McPhaden, K. Takahashi, A. Timmermann, G. Vecchi, M. Watanabe1 and L. Wu, 2015. ENSO and greenhouse warming. Nature Climate Change. 5, 849-859.
Capotondi, A., A. T. Wittenberg, M. Newman, E. Di Lorenzo, J.-Y. Yu, P. Braconnot, J. Cole, B. Dewitte, B. Giese, E. Guilyardi, F.-F. Jin, K. Karnauskas, B. Kirtman, T. Lee, N. Schneider, Y. Xue, S.-W. Yeh, 2014. Understanding ENSO diversity, Bulletin of the American Meteorological Society, doi: http: 10.1175/BAMS-D-13-00117.1.
Deser, C., M. A. Alexander, S.-P. Xie and A. S. Phillips, 2010. Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, Vol. 2: 115 -143.
Fang, Mingqiang, 2006. A thermal centroid or a mass centroid? J. Oceanography, Vol. 62 (No. 5): 759-766.
Fang Mingqiang, Yan Chen, Hongping Li, Lixin Wu, 2013. Surface thermal centroid anomaly of the eastern equatorial Pacific as a unified Niño index. CJOL, Vol. 31 (No. 5), pp1129-1136.
Guckenheimer J., A. Timmermann, H. Dijkstra, and A. Roberts, 2017. (Un)predictability of strong El Niño events. Climate System DOI: 10.1093/climsys/dzx004/467521.
Kao, H. Y. and J. Y. Yu, 2009. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 22: 615–632.
Kug, J. S., F. F. Jin and S. I. An, 2009. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22: 1499–1515.
Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010. Warm pool and cold tongue El Niño events as simulated by the GFDL CM2.1 coupled GCM. J. Climate, 23, 1226-1239. doi: 10.1175/2009JCLI3293.1
Larkin, N. K. and D. E. Harrison, 2005. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett. 32, L13705, doi: 10.1029/2005GL022738.
Latif, M., R. Kleeman and C. Eckert, 1997. Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Clim. 10: 2221–2239.
McPhaden, M. J., T. Lee, and D. McClurg, 2011. El Niño and its relationship to changing background conditions in the tropical Pacific Ocean, Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275.
Paek, H., J.-Y. Yu, and C. Qian, 2017. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, doi: 10.1002/ 2016GL071515.
Peng Jingbei, Zhang Qingyun, and Chen Lieting, 2011. Connections between different types of El Niño and Southern/Northern Oscillation. Acta Meteor. Sinica, 25(4), 506-516, doi: 10. 1007/s13351-011-0409-9.
Ren, H. L., and F. F. Jin, 2011. Niño indices for two types of ENSO, Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.
Ren H. L, F. F. Jin, M. F. STUECKER and R. H. Xie, 2013. ENSO Regime Change since the Late 1970s as Manifested by Two Types of ENSO. Journal of the Meteorological Society of Japan, Vol. 91, No. 6, pp. 835̶842, DOI: 10.2151/jmsj.2013-608.
Reynolds, R. W., 1988. A real-time global sea surface temperature analysis. J. Clim., 1: 75-86.
Reynolds, R. W. and D. C. Marsico, 1993. An improved real-time global sea surface temperature analysis. J. Clim., 6: 114-119.
Reynolds, R. W. and T. M. Smith, 1994. Improved global sea surface temperature analyses. J. Clim., 7: 929-948.
Takahashi K. and B. Dewitte, 2015. Strong and moderate nonlinear El Niño regimes. Clim. Dyn., DOI 10.1007/s00382-015-2665-3.
Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi: 10.1029/2011GL047364.
Trenberth K. E., 1984. Signal versus noise in the Southern Oscillation. Mon Weather Rev. 112: 326–332. Trenberth, K. E., 1997. The definition of El Niño. Bull. Amer. Meteor. Soc. 78: 2771-2777.
Trenberth, K. E. and D. P. Stepaniak, 2001. Indices of El Niño Evolution. J. Clim., 14: 1697–1701.
Trenberth, K. E. and L. Smith, 2006. The vertical structure of temperature in the tropics: Different flavors of El Niño. J. Climate, 19, 4956–4973.
Xiang, B. Q., B. Wang, and T. Li, 2012. A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Clim. Dyn., doi: 10.1007/s00382-012-1427-8.
Yeh, S. W., J. S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman and F.-F. Jin, 2009. El Niño in a changing climate, Nature. 461: 511-514.
Yu, J. Y., H. Y. Kao, T. Lee and S. T. Kim, 2011. Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol. 103: 337-344. DOI 10.1007/s00704-010-0307-6.
Yu, J.-Y. and Kim, S. T., 2013. Identifying the types of major El Niño events since 1870. Int. J. Climatol., 33: 2105–2112. doi: 10.1002/joc.3575.
Zheng, F., X.-H. Fang, J.-Y. Yu and J. Zhu. 2014. Asymmetry of the Bjerknes positive feedback between the two types of El Niño, Geophys. Res. Lett., 41, doi: 10.1002/2014GL062125.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186