American Journal of Sports Science

| Peer-Reviewed |

Resistance High-Intensity Interval Training (HIIT) Improves Acute Gluconeogenesis from Lactate in Mice

Received: 12 April 2019    Accepted: 23 May 2019    Published: 04 June 2019
Views:       Downloads:

Share This Article

Abstract

High-intensity interval training (HIIT) markedly activates muscle anaerobic glycolysis and increases blood lactate. As the liver is a major organ for lactate clearance from the bloodstream, it might improve gluconeogenesis from lactate (NEO-lac) after a period of resistance HIIT. NEO-lac was evaluated by in situ liver perfusion in mice subjected to a resistance HIIT for 4 (T4) or 8 (T8) weeks, or not trained (T0). Perfusion was carried out immediately after an incremental exercise session to test the acute NEO-lac. Muscle strength (expressed as relative maximum load) and blood lactate were higher in T4 than in T0, but NEO-lac did not differ, possibly because of energy discharge of the liver and substrate overload. After 8 weeks of HIIT (T8), both muscle strength and liver NEO-lac increased, but blood lactate did not. The resistance HIIT for 8 weeks modulated liver gluconeogenic efficiency and capacity, which are important mechanisms for the improved clearance of blood lactate.

DOI 10.11648/j.ajss.20190702.12
Published in American Journal of Sports Science (Volume 7, Issue 2, June 2019)
Page(s) 53-59
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Lactate, Resistance HIIT, Mouse, Liver, Performance

References
[1] D. G. Hardie. Organismal carbohydrate and lipid homeostasis. Cold Spring Harbor Perspec Biol, vol. 4, n. 5, pp. a006031, 2012.
[2] J. D. Mul, K. I. Stanford, M. F. Hirshman, L. J. Goodyear. Exercise and regulation of carbohydrate metabolism. Prog Mol Biol Transl Sci, vol. 135, pp. 17–37, 2015.
[3] G. Van Hall. Lactate kinetics in human tissues at rest and during exercise. Acta Physiologica, vol. 199, n. 4, pp. 499–508, 2010.
[4] O. Faude, W. Kindermann, T. Meyer. Lactate threshold concepts: How valid are they? Sports Medicine, vol. 39, n. 6, pp. 469–490, 2009.
[5] P. H. S. Azevedo, A. Garcia, J. M. P. Duarte, G. M. Rissato, V. K. P. Carrara, R. A. Marson. Limiar anaeróbio e bioenergética: uma abordagem didática e integrada. Rev Educ Fis UEM, vol. 20, n. 3, pp. 453–464, 2009.
[6] W. H. Brito Vieira, M. J. E. Halsberghe, M. L. B. Schwantes, S. E. A. Perez, V. Baldissera, J. Prestes, D. L. Farias, N. A. Parizotto. Increased lactate threshold after five weeks of treadmill aerobic training in rats. Braz J Biol, vol. 74, n. 2, pp. 444–449, 2014.
[7] J. P. Furlan, A. L. V. Depieri, M. M. D. Pedrosa. Metabolismo do lactato e avaliação de desempenho: dois lados do mesmo processo. Rev Saúde Pesq, vol. 10, n. 1, pp. 171-170, 2017.
[8] M. L. Goodwin, J. E. Harris, A. Hernandéz, L. B. Gladden. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol, vol. 1, n. 4, pp. 558–569, 2007.
[9] E. Trefts, A. S. Williams, D. H. Wasserman. Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci, v. 135, pp. 203–225, 2015.
[10] M. J. Gibala, S. L. McGee. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev, vol. 36, n. 2, pp. 58Y63, 2008.
[11] M. J. Gibala, J. P. Little, M. J. MacDonald, J. A. Hawley. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol, vol. 590, n. 5, p. 1077–1084, 2012.
[12] R. B. Viana, J. P. A. Naves, V. S. Coswig, C. A. B. de Lira, J. Steele, J. P. Fisher, P. Gentil. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high intensity interval training (HIIT). Br J Sports Med, 2019. doi: 10.1136/bjsports-2018-099928.
[13] R. B. Batacan, M. J. Duncan, V. J. Dalbo, P. S. Tucker, A. S. Fenning. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med, vol. 51, n. 6, pp. 494–503, 2017.
[14] K. A. Burgomaster, K. R. Howarth, S. M. Philips, M. Rakobowchuk, M. J. MacDonald, S. L. McGee, M. J. Gibala. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, vol. 586, n. 1, p. 151–160, 2008.
[15] M. Heydari, J. Freund, S. H. Boutcher. The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes, vol. 2012, n. 12, pp. 1–8, 2012.
[16] C. W. Emhoff, L. A. Messonnier, M. A. Horning, J. A. Fattor, T. J. Carlson, G. A. Brooks. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol, vol. 114, pp. 297–306, 2013.
[17] AC. Panveloski-Costa, M. Papoti, R. J. Moreira, P. M. Seraphim. Respostas lactacidêmicas de ratos ao treinamento intermitente de alta intensidade. Rev Bras Med Esporte, vol. 18, pp. 122- 125, 2012.
[18] V. A. R. Pereira, K. S. Vedovelli, G. Y. Muller, Y. F. Depieri, D. H. C. G. Avelar, A. H. E. de Amo, D. R. Jimenes, J. N. L. Martins, A. C. Silvério, C. R. G. Gomes, V. A. F. Godoi, M. M. D. Pedrosa. Pros and cons of insulin administration on liver glucose metabolism in strength-trained healthy mice. Braz J Med Biol Res, vol. 52, n. 2, e7637, 2019.
[19] W. K. Neto, W. A. Silva, A. P. Ciena, C. A. Anaruma, E. F. Gama. Vertical climbing for rodent resistance training: a discussion about training parameters. Int J Sports Sci, vol. 06, pp. 36-49, 2016.
[20] R. F. Garcia, I. R. Mariano, I. C. Stolarz, M. M. D. Pedrosa. Refeeding after caloric restriction reverses altered liver glucose release. Arch Physiol Biochem, 2017. http://dx.doi.org/10.1080/13813455.2017.1370000.
[21] V. A. F. Godoi, G. B. Mamus, D. G. L. Rezende, M. A. Primo, M. M. D. Pedrosa, J. A. Berti. Changes of liver glucose metabolism in C57BL/6 mice transgenic for human apolipoprotein ApoCIII. J Pharm Pharmacol, vol. 6, pp. 456-465, 2018.
[22] K. F. Nascimento, R. F. Garcia, V. A. F. G. Gazola, H. M. Souza, S. Obici, R. B. Bazotte. Contribution of hepatic glycogenolysis and gluconeogenesis in the defense against short-term insulin induced hypoglycemia in rats. Life Sci, vol. 82, pp. 1018-1022, 2008.
[23] G. G. De Araújo, C. A. Gobatto, F. B. Manchado-Gobatto, L. F. M. Teixeira, I. G. M. Dos eis, L. C. Caperuto, M. Papoti, S. Bordin, C. R. Cavaglieri, R. Verlengia. MCT1 and MCT4 kinetic of mRNA expression in different tissues after aerobic exercise at maximal lactate steady state workload. Physiol Res, vol. 64, pp. 513-522, 2015.
[24] L. Rui. Energy metabolism in the liver. Compr Physiol, vol. 4, n. 1, pp. 177-197, 2014.
[25] S. Ghafoory, K. Breitkopf-Heinlein, Q. Li, C. Scholl, S. Dooley, S. Wölfl. Zonation of nitrogen and glucose metabolism gene expression upon acute liver damage in mouse. PLoS One, vol. 8, n. 10, e78262, 2013.
Author Information
  • Department of Physical Education, State University of Maringá, Maringá, Brazil

  • Department of Biological Sciences, State University of Maringá, Maringá, Brazil

  • Specialization in Human Physiology, State University of Maringá, Maringá, Brazil

  • Program of Graduate Studies in Physiological Sciences, State University of Maringá, Maringá, Brazil

  • Program of Graduate Studies in Physical Education, State University of Maringá, Maringá, Brazil

  • Program of Graduate Studies in Physiological Sciences, State University of Maringá, Maringá, Brazil

  • Department of Physiological Sciences, State University of Maringá, Maringá, Brazil

Cite This Article
  • APA Style

    Gabrielle Yasmin Muller, André Henrique Ernandes de Amo, Karen Saar Vedovelli, Isabela Ramos Mariano, Giselle Cristina Bueno, et al. (2019). Resistance High-Intensity Interval Training (HIIT) Improves Acute Gluconeogenesis from Lactate in Mice. American Journal of Sports Science, 7(2), 53-59. https://doi.org/10.11648/j.ajss.20190702.12

    Copy | Download

    ACS Style

    Gabrielle Yasmin Muller; André Henrique Ernandes de Amo; Karen Saar Vedovelli; Isabela Ramos Mariano; Giselle Cristina Bueno, et al. Resistance High-Intensity Interval Training (HIIT) Improves Acute Gluconeogenesis from Lactate in Mice. Am. J. Sports Sci. 2019, 7(2), 53-59. doi: 10.11648/j.ajss.20190702.12

    Copy | Download

    AMA Style

    Gabrielle Yasmin Muller, André Henrique Ernandes de Amo, Karen Saar Vedovelli, Isabela Ramos Mariano, Giselle Cristina Bueno, et al. Resistance High-Intensity Interval Training (HIIT) Improves Acute Gluconeogenesis from Lactate in Mice. Am J Sports Sci. 2019;7(2):53-59. doi: 10.11648/j.ajss.20190702.12

    Copy | Download

  • @article{10.11648/j.ajss.20190702.12,
      author = {Gabrielle Yasmin Muller and André Henrique Ernandes de Amo and Karen Saar Vedovelli and Isabela Ramos Mariano and Giselle Cristina Bueno and Julia Pedrosa Furlan and Maria Montserrat Diaz Pedrosa},
      title = {Resistance High-Intensity Interval Training (HIIT) Improves Acute Gluconeogenesis from Lactate in Mice},
      journal = {American Journal of Sports Science},
      volume = {7},
      number = {2},
      pages = {53-59},
      doi = {10.11648/j.ajss.20190702.12},
      url = {https://doi.org/10.11648/j.ajss.20190702.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajss.20190702.12},
      abstract = {High-intensity interval training (HIIT) markedly activates muscle anaerobic glycolysis and increases blood lactate. As the liver is a major organ for lactate clearance from the bloodstream, it might improve gluconeogenesis from lactate (NEO-lac) after a period of resistance HIIT. NEO-lac was evaluated by in situ liver perfusion in mice subjected to a resistance HIIT for 4 (T4) or 8 (T8) weeks, or not trained (T0). Perfusion was carried out immediately after an incremental exercise session to test the acute NEO-lac. Muscle strength (expressed as relative maximum load) and blood lactate were higher in T4 than in T0, but NEO-lac did not differ, possibly because of energy discharge of the liver and substrate overload. After 8 weeks of HIIT (T8), both muscle strength and liver NEO-lac increased, but blood lactate did not. The resistance HIIT for 8 weeks modulated liver gluconeogenic efficiency and capacity, which are important mechanisms for the improved clearance of blood lactate.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Resistance High-Intensity Interval Training (HIIT) Improves Acute Gluconeogenesis from Lactate in Mice
    AU  - Gabrielle Yasmin Muller
    AU  - André Henrique Ernandes de Amo
    AU  - Karen Saar Vedovelli
    AU  - Isabela Ramos Mariano
    AU  - Giselle Cristina Bueno
    AU  - Julia Pedrosa Furlan
    AU  - Maria Montserrat Diaz Pedrosa
    Y1  - 2019/06/04
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ajss.20190702.12
    DO  - 10.11648/j.ajss.20190702.12
    T2  - American Journal of Sports Science
    JF  - American Journal of Sports Science
    JO  - American Journal of Sports Science
    SP  - 53
    EP  - 59
    PB  - Science Publishing Group
    SN  - 2330-8540
    UR  - https://doi.org/10.11648/j.ajss.20190702.12
    AB  - High-intensity interval training (HIIT) markedly activates muscle anaerobic glycolysis and increases blood lactate. As the liver is a major organ for lactate clearance from the bloodstream, it might improve gluconeogenesis from lactate (NEO-lac) after a period of resistance HIIT. NEO-lac was evaluated by in situ liver perfusion in mice subjected to a resistance HIIT for 4 (T4) or 8 (T8) weeks, or not trained (T0). Perfusion was carried out immediately after an incremental exercise session to test the acute NEO-lac. Muscle strength (expressed as relative maximum load) and blood lactate were higher in T4 than in T0, but NEO-lac did not differ, possibly because of energy discharge of the liver and substrate overload. After 8 weeks of HIIT (T8), both muscle strength and liver NEO-lac increased, but blood lactate did not. The resistance HIIT for 8 weeks modulated liver gluconeogenic efficiency and capacity, which are important mechanisms for the improved clearance of blood lactate.
    VL  - 7
    IS  - 2
    ER  - 

    Copy | Download

  • Sections