Clinical Medicine Research

| Peer-Reviewed |

Diabetic Cardiomyopathy - Heart Disease in Diabetes

Received: 06 August 2013    Accepted:     Published: 30 August 2013
Views:       Downloads:

Share This Article

Abstract

Diabetic cardiomyopathy is defined as a finding of systolic and diastolic left ventricular dysfunction, myocardial dilation and left ventricular hypertrophy without the presence of macroangiopathy and hypertension. Causes include metabolic changes, myocardial fibrosis, microangiopathy as well as cardiovascular autonomic neuropathy leading to sympathetic denervation and alteration of myocardial perfusion. It comprises abnormalities in the control of heart rate as well as central and peripheral vascular dynamics. The diagnosis of diabetic cardiomyopathy affects significantly the prognosis in patients with diabetes. Echocardiography and nuclear medicine methods are used for diagnosis.

DOI 10.11648/j.cmr.20130204.20
Published in Clinical Medicine Research (Volume 2, Issue 4, July 2013)
Page(s) 89-93
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Cardiovascular Autonomic Neuropathy, Diabetic Cardiomyopathy, Myocardial Scintigraphy, Echocardiography

References
[1] D. Ziegler, C. P. Zentai and S. Perz S. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population The MONICA/KORA Augsburg Cohort Study. Diabetes Care 2008; 31, pp. 556-561.
[2] A. I. Vinik, RE. Maser and BD. Mitchell. Diabetic autonomic neuropathy. Diabetes Care 2003; 26 (5), pp. 1553-1579.
[3] P. Spirito, P. Bellone, K. M. Harris, P. Bernabo, P. Bruzzi and B. J. Maron. Magnitude of left ventricular hypertrophy and risk sudden death in hypertrophic cardiomyopathy. N Engl J Med 2000; 342, pp. 1778-1785.
[4] C. Voulgari, D. Papadogiannis and N. Tentolouris. Diabetic cardiomyopathy: from the pathophysiology of cardiac myocytes to current diagnosis and management strategies. Vascular Health and Risk Management 2010; 6, pp. 883-903.
[5] S. Lacigova, J. Meinlova and J. Gruberova. The heart of patient with type 1 diabetes. Vnitř Lék 2010; 56(5), pp. 418-426.
[6] M. Petretta,W. Acampa and S. Daniele. Transient ischemic dilation in SPECT myocardial perfusion imaging for prediction of severe coronary artery disease in diabetic patients. J Nucl Cardiol 2012; doi: 10. 1007/s12350-012-9642-6.
[7] A. Adamikova, J. Bakala, J. Bernatek, J. Rybka and S. Svacina. Transient ischemic dilation ratio (TID) correlates with HbA1c in patients with diabetes type 2 with proven myocardial ischemia according to exercise myocardial SPECT. Ann Nucl Med 2006; 20(9), pp. 615-621.
[8] C. Tei. New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol 1995; 26, pp. 135-136.
[9] C. Tei, L. H. Ling, D. O. Hodge, K. R. Bailey, J. K. Oh and J. K.Tajik. New index of combined systolic and diastolic myocardial performance: a simple and reproducibile measure of cardiac function: a study in normal and dilated cardiomyopathy. J Cardiol 1995; 26, pp. 357-366.
[10] C. Voulgari, N. Tentolouris and D. Papadagiannis. Increased left ventricular arrhytmogenicity in metabolic syndrome and relationship with myocardial performance, risk factors for athrerosclerosis, and low-grade inflammation. Metabolism 2010; 59, pp. 159-165.
[11] B. Nørager, M. Husic, J. E. Møller and K. Egstrup. The myocardial performance index during low-dose dobutamine echocardiography in control subjects and patients with a recent myocardial infarction: a new index of left ventricular functional reserve? Journal of the American Society of echocardiography 2004; 17(7), pp. 732-738.
[12] L. H. Ling, C. Tei, R. B. McCully, K. R. Bailey, J. B. Seward and P. A. Pellikka. Analysis of systolic and diastolic time intervals during dobutamie-atropine stress echocardiography: Diagnostic potencial of the doppler myocardial performance index. Journal of the American Society of Echocardiography 2001; 14(10), pp. 978-986.
[13] S. Murashima, K. Takeda, K. Matsumura, K. Yamakado, H. Sakuma and T. Nakagawa. Increased lung uptake of Iodine-123-MIBG in diabetics with sympathetic nervous dysfunction. J Nucl Med 1998; 39(2), pp. 334-338.
[14] A. Scott and P. L. Kench. Cardiac autonomic neuropathy in diabetic patient: does 123I-MIBG imaging have role to play in early diagnosis? J Nucl Med Technol 2004; 32, pp. 66-71.
[15] J. Bakala, J. Bernatek, P. Kurfürst and A. Adamikova. Comparison cardiac adrenergic innervation between patients with and without diabetes mellitus using 123IMIBG planar scintigraphy and SPECT method. [abstract] Cas Lék Ces 2011; 150(2), pp. 116-117.
[16] S. Nagamachi, S. Jinnouchi, T. Kurose, R. Nishii, K. Kawai and S. Futami. Serial chase in 123I-MIBG myocardial scintigraphy in non-insulin-depender diabetes melllitus. Ann Nucl Med 2002; 16(1), pp. 33-38.
[17] D. Agostini, H. J. Verberne, M. Hamon, AF. Jacobson and A. Manrique. Cardiac 123I-MIBG scintigraphy in heart failure. J Nucl Med Mol Imaging 2008; 52(4), pp. 369-77.
[18] D. Agostini, I. Carrrio and H. J. Verberne. How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging 2009; 36, pp. 555-559.
[19] A. F. Jacobson, J. Lombard, G. Banerjee and P. G. Camici. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: designe of two prospective multicenter international trials. J Nucl Card 2009; 16(1), pp. 113-21.
[20] S. Hughes. ACC: ADMIRE-HF: new imaging test helps better define risk in heart failure. 2009; http://www.medscape.com/viewarticle/590516.
Author Information
  • Diabetes Center, Bata Regional Hospital, Zlín, Czech Republic

  • Department of Nuclear Medicine, Bata Regional Hospital, Zlín, Czech Republic

  • Department of Nuclear Medicine, Bata Regional Hospital, Zlín, Czech Republic

  • Cardiovascular Center, Bata Regional Hospital, Zlín, Czech Republic

  • First Faculty of Medicine, Charles University, Prague, Czech Republic

Cite This Article
  • APA Style

    Alena ADAMIKOVA, Jiri BAKALA, Jana PATEROVA, Martin SLABAK, Stepan SVACINA. (2013). Diabetic Cardiomyopathy - Heart Disease in Diabetes. Clinical Medicine Research, 2(4), 89-93. https://doi.org/10.11648/j.cmr.20130204.20

    Copy | Download

    ACS Style

    Alena ADAMIKOVA; Jiri BAKALA; Jana PATEROVA; Martin SLABAK; Stepan SVACINA. Diabetic Cardiomyopathy - Heart Disease in Diabetes. Clin. Med. Res. 2013, 2(4), 89-93. doi: 10.11648/j.cmr.20130204.20

    Copy | Download

    AMA Style

    Alena ADAMIKOVA, Jiri BAKALA, Jana PATEROVA, Martin SLABAK, Stepan SVACINA. Diabetic Cardiomyopathy - Heart Disease in Diabetes. Clin Med Res. 2013;2(4):89-93. doi: 10.11648/j.cmr.20130204.20

    Copy | Download

  • @article{10.11648/j.cmr.20130204.20,
      author = {Alena ADAMIKOVA and Jiri BAKALA and Jana PATEROVA and Martin SLABAK and Stepan SVACINA},
      title = {Diabetic Cardiomyopathy - Heart Disease in Diabetes},
      journal = {Clinical Medicine Research},
      volume = {2},
      number = {4},
      pages = {89-93},
      doi = {10.11648/j.cmr.20130204.20},
      url = {https://doi.org/10.11648/j.cmr.20130204.20},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.cmr.20130204.20},
      abstract = {Diabetic cardiomyopathy is defined as a finding of systolic and diastolic left ventricular dysfunction, myocardial dilation and left ventricular hypertrophy without the presence of macroangiopathy and hypertension. Causes include metabolic changes, myocardial fibrosis, microangiopathy as well as cardiovascular autonomic neuropathy leading to sympathetic denervation and alteration of myocardial perfusion. It comprises abnormalities in the control of heart rate as well as central and peripheral vascular dynamics. The diagnosis of diabetic cardiomyopathy affects significantly the prognosis in patients with diabetes. Echocardiography and nuclear medicine methods are used for diagnosis.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Diabetic Cardiomyopathy - Heart Disease in Diabetes
    AU  - Alena ADAMIKOVA
    AU  - Jiri BAKALA
    AU  - Jana PATEROVA
    AU  - Martin SLABAK
    AU  - Stepan SVACINA
    Y1  - 2013/08/30
    PY  - 2013
    N1  - https://doi.org/10.11648/j.cmr.20130204.20
    DO  - 10.11648/j.cmr.20130204.20
    T2  - Clinical Medicine Research
    JF  - Clinical Medicine Research
    JO  - Clinical Medicine Research
    SP  - 89
    EP  - 93
    PB  - Science Publishing Group
    SN  - 2326-9057
    UR  - https://doi.org/10.11648/j.cmr.20130204.20
    AB  - Diabetic cardiomyopathy is defined as a finding of systolic and diastolic left ventricular dysfunction, myocardial dilation and left ventricular hypertrophy without the presence of macroangiopathy and hypertension. Causes include metabolic changes, myocardial fibrosis, microangiopathy as well as cardiovascular autonomic neuropathy leading to sympathetic denervation and alteration of myocardial perfusion. It comprises abnormalities in the control of heart rate as well as central and peripheral vascular dynamics. The diagnosis of diabetic cardiomyopathy affects significantly the prognosis in patients with diabetes. Echocardiography and nuclear medicine methods are used for diagnosis.
    VL  - 2
    IS  - 4
    ER  - 

    Copy | Download

  • Sections