| Peer-Reviewed

Nanophosphors with Partially Polymerized SiO4 Tetrahedra Produced by Evaporation of Ca2Y8 (SiO4)6O2: Eu Polycrystals

Received: 24 June 2016    Accepted: 14 April 2017    Published: 27 April 2017
Views:       Downloads:
Abstract

Nanophosphors in the amorphous state were produced for the first time by pulsed electron beam evaporation of micrometer-sized polycrystalline phosphors of the composition Ca2Y8 (SiO4)6O2: Eu. It was found that the Raman spectrum is modified and the forbidden band width of the samples increases when the particle size lowers from micro- to nanodimensional state. The spectral luminescent characteristics in polycrystalline and amorphous states have been examined. It was established that during the transition to nanoamorphous state the phosphors change their photoluminescence color from red-orange (Eu3+) to blue (Eu2+).

Published in American Journal of Materials Synthesis and Processing (Volume 2, Issue 2)
DOI 10.11648/j.ajmsp.20170202.13
Page(s) 28-31
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Nanophosphor, Microscopy, Raman Spectra, luminescence, Eu3+, Eu2+

References
[1] M. G. Zuev, S. Yu. Sokovnin, V. G. Il’ves, I. V. Baklanova, A. A. Vasin // J. Solid State Chemistry 218 (2014) 164–170.
[2] A. A. Vasin, M. G. Zuev, E. V. Zabolotskaya, I. V. Baklanova, L. A. Akashev, R. F. Sammigulina // J. Lumin., vol. 168, pp. 26–37, 2015.
[3] V. A. Ishchenko, M. G. Zuev, A. A. Vasin, V. V. Yagodin, L. V. Viktorov, B. V. Shulgin // J. Lumin., vol. 169, Part A, pp. 137–142, 2016.
[4] S. Yu. Sokovnin, V. G. Il’ves1, M. G. Zuev // Chapter 2. Production of complex metal oxide nanopowders using pulsed electron beam in low-pressure gas for biomaterials application in book «Engineering of Nanobiomaterials Applications of Nanobiomaterials» vol. 2, pp. 29–76, 2016.
[5] M. G. Zuev, A. M. Karpov, A. S. Shkvarin // J. Solid State Chem., vol. 184, pp. 52-58, 2011.
[6] A. M. Karpov, M. G. Zuev // Glass Physics and Chem., vol. 38, pp. 431-436, 2012.
[7] R. El. Ouenzerfi, C. Goutaudier, M. Th. Cohen-Adad at al. // J. Lumin., vol. 102–103, pp. 426-433, 2003.
[8] L. Boyer, B. Piriou, J. Carpena, J. L. Lacout. // J. Alloys Compd., vol. 311, pp. 143-152, 2000.
[9] F. Flory, L. Escoubas, G. Berginc // J. Nanophotonics, vol. 5, pp. 052502-052502, 2011.
[10] Nanophotonics-foresight-report-june-2011. Report eds. N. van Hulst, S. Kennedy. ICFO-The Institute of Photonic Sci. Barcelona, Spain. www.nanophotonic-foresight- report-june-2011.
[11] S. Yu. Sokovnin, V. G. Il'ves, M. G. Zuev. Production of complex metal oxide nanopouders using pulsed electron beam in low-pressure gas for biomaieriats application. Chapter 2 in Engineering of Nanobiomaterials Applications of Nanobiomaterials. Vol. 2. Edited by Alexandru Grumezescu, Elsevier 2016.
[12] S. Brunauer Adsorbtsiya gazov i parov. Tom 1. Fizicheskaya adsorbtsiya (The adsorption of gases and vapors. Vol. 1. Physical adsorption). Moscow: Izdatinlit, 1948. 781 p.
[13] Yu. K. Voron’ko, A. A. Sobol’, V. E. Shukshin, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, Physics of the solid state 54 (2012) 1635-1642.
[14] A. N. Lazarev, A. P. Mirgorodskii, I. S. Ignat’ev, Vibrational Spectra of Complex Oxides, Nauka, Leningrad (1975) 296 ([in Russian]).
[15] C. Y. Xu, P. X. Zhang, L. Yan // J. Raman Spectrosc., vol. 32, pp. 862-865, 2001.
[16] K. Rout, M. Mohapatra, S. Anand // Applied Surface Science, vol. 270, pp. 205-218, 2013.
[17] Manveer Singh, P. D. Sahare, Pratik Kumar, Shaila Bahl, Columbia International Publishing, J. of Luminescence and Applications 3 (2016) 1-10.
[18] E. Malchukova, B. Boizot, Materials Research Bulletin 45 (2010) 1299-1303.
[19] A. F. Zatsepin, A. I. Kukharenko, V. A. Pustovarov, V. Yu. Yakovlev, and S. O. Cholakh, Physics of the Solid State 51 (2009) 465-473.
[20] Ryosuke Yokota, J. Phys. Soc. Jpn. 23 (1967) 129-130.
Cite This Article
  • APA Style

    Мikhail Georgievich Zuev, Vladislav Genrikhovich Il'ves, Sergey Yurievich Sokovnin, Elena Yuryevna Zhuravleva. (2017). Nanophosphors with Partially Polymerized SiO4 Tetrahedra Produced by Evaporation of Ca2Y8 (SiO4)6O2: Eu Polycrystals. American Journal of Materials Synthesis and Processing, 2(2), 28-31. https://doi.org/10.11648/j.ajmsp.20170202.13

    Copy | Download

    ACS Style

    Мikhail Georgievich Zuev; Vladislav Genrikhovich Il'ves; Sergey Yurievich Sokovnin; Elena Yuryevna Zhuravleva. Nanophosphors with Partially Polymerized SiO4 Tetrahedra Produced by Evaporation of Ca2Y8 (SiO4)6O2: Eu Polycrystals. Am. J. Mater. Synth. Process. 2017, 2(2), 28-31. doi: 10.11648/j.ajmsp.20170202.13

    Copy | Download

    AMA Style

    Мikhail Georgievich Zuev, Vladislav Genrikhovich Il'ves, Sergey Yurievich Sokovnin, Elena Yuryevna Zhuravleva. Nanophosphors with Partially Polymerized SiO4 Tetrahedra Produced by Evaporation of Ca2Y8 (SiO4)6O2: Eu Polycrystals. Am J Mater Synth Process. 2017;2(2):28-31. doi: 10.11648/j.ajmsp.20170202.13

    Copy | Download

  • @article{10.11648/j.ajmsp.20170202.13,
      author = {Мikhail Georgievich Zuev and Vladislav Genrikhovich Il'ves and Sergey Yurievich Sokovnin and Elena Yuryevna Zhuravleva},
      title = {Nanophosphors with Partially Polymerized SiO4 Tetrahedra Produced by Evaporation of Ca2Y8 (SiO4)6O2: Eu Polycrystals},
      journal = {American Journal of Materials Synthesis and Processing},
      volume = {2},
      number = {2},
      pages = {28-31},
      doi = {10.11648/j.ajmsp.20170202.13},
      url = {https://doi.org/10.11648/j.ajmsp.20170202.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmsp.20170202.13},
      abstract = {Nanophosphors in the amorphous state were produced for the first time by pulsed electron beam evaporation of micrometer-sized polycrystalline phosphors of the composition Ca2Y8 (SiO4)6O2: Eu. It was found that the Raman spectrum is modified and the forbidden band width of the samples increases when the particle size lowers from micro- to nanodimensional state. The spectral luminescent characteristics in polycrystalline and amorphous states have been examined. It was established that during the transition to nanoamorphous state the phosphors change their photoluminescence color from red-orange (Eu3+) to blue (Eu2+).},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Nanophosphors with Partially Polymerized SiO4 Tetrahedra Produced by Evaporation of Ca2Y8 (SiO4)6O2: Eu Polycrystals
    AU  - Мikhail Georgievich Zuev
    AU  - Vladislav Genrikhovich Il'ves
    AU  - Sergey Yurievich Sokovnin
    AU  - Elena Yuryevna Zhuravleva
    Y1  - 2017/04/27
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajmsp.20170202.13
    DO  - 10.11648/j.ajmsp.20170202.13
    T2  - American Journal of Materials Synthesis and Processing
    JF  - American Journal of Materials Synthesis and Processing
    JO  - American Journal of Materials Synthesis and Processing
    SP  - 28
    EP  - 31
    PB  - Science Publishing Group
    SN  - 2575-1530
    UR  - https://doi.org/10.11648/j.ajmsp.20170202.13
    AB  - Nanophosphors in the amorphous state were produced for the first time by pulsed electron beam evaporation of micrometer-sized polycrystalline phosphors of the composition Ca2Y8 (SiO4)6O2: Eu. It was found that the Raman spectrum is modified and the forbidden band width of the samples increases when the particle size lowers from micro- to nanodimensional state. The spectral luminescent characteristics in polycrystalline and amorphous states have been examined. It was established that during the transition to nanoamorphous state the phosphors change their photoluminescence color from red-orange (Eu3+) to blue (Eu2+).
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia

  • Ural Federal University Named After First President of Russia B. N. Yeltsin, Ekaterinburg, Russia; Institute of Electrophysics, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia

  • Ural Federal University Named After First President of Russia B. N. Yeltsin, Ekaterinburg, Russia; Institute of Electrophysics, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia

  • Ural Federal University Named After First President of Russia B. N. Yeltsin, Ekaterinburg, Russia

  • Sections