Advanced Synthesis and 3D-AFM-Structural Features of Mono-Metalized Cyclotetraphosphates
American Journal of Materials Synthesis and Processing
Volume 2, Issue 1, January 2017, Pages: 5-16
Received: Mar. 12, 2017; Accepted: Mar. 29, 2017; Published: Apr. 19, 2017
Views 294      Downloads 25
Authors
Khaled M. Elsabawy, Materials Science Unit, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt; Department of Chemistry, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
A. El-Maghraby, Department of Chemistry, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia; Ceramic Department, Physics Department, National Research Center, Dokki, Tahrirst., Egypt
Article Tools
Follow on us
Abstract
Solution route applying the precursor of metaldihydrogen phosphate dihydrate was used to synthesize M-cyclophosphatesat ambient temperature (cobalt (II) was selected as model for metal in these investigations). The precursor was fired and sintered at different temperatures (600, 800, 1000 and 1100°C) respectively to optimize best conditions to obtain Co2P4O12 crystal form with high purity. The products were monitored by both of XRD, IR spectra by additional to accurate imaging via scanning electron microscope (SEM) and AFM-microscopeto analyzesurface topology and microstructural features of the metal cyclotetraphosphate. Structural investigations via XRD proved that the product obtained at 1100°C is the best and fine structure with monoclinic structure phase and C12/C1 space group with lattice parameter a=11.809(2), b=8.293(1), c=9.923(2) A respectively. A visualized investigations were performed to confirm structure validity and stability at temperature of sintering (1100°C). Visualization studies indicated that variations of bond distances between Co1, Co2, P1 and P2 and different six oxygen atoms (O1, O2, O3, O4, O5 and O6) inside crystal lattice are responsible for increasing lattice flexibility factor (by controlling in shrinkage and expansion coefficient) and consequently increase its bonds stability to break.
Keywords
Synthesis, Ceramics, XRD, IR, SEM, AFM, Visualization
To cite this article
Khaled M. Elsabawy, A. El-Maghraby, Advanced Synthesis and 3D-AFM-Structural Features of Mono-Metalized Cyclotetraphosphates, American Journal of Materials Synthesis and Processing. Vol. 2, No. 1, 2017, pp. 5-16. doi: 10.11648/j.ajmsp.20170201.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Jouini, A.; Gaˆcon, J. C.; Ferid, M.; Trabelsi-Ayadi, M. Optical properties of praseodymium concentrated phosphates. Opt. Mater. 2003, 24, p.175.
[2]
Kitsugi, T.; Yamamuro, T.; Nakamura, T.; Oka, M. Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. Biomaterials 1995, 16, p.1101.
[3]
Jian-Jiang, B.; Dong-Wan, K.; Kug Sun, H. Microwave dielectric properties of Ca2P2O7. J. Eur. Ceram. Soc. 2003, 23, p. 2589.
[4]
Martinelli, J. R.; Sene, F. F.; Gomes, L. Synthesis and properties of niobium barium phosphate glasses. J. Non-Cryst. Solids 2000, 263, p.299.
[5]
Parada, C.; Perles, J.; Saez-Puche, R.; Ruiz-Valero, C.; Snejko, N. Crystal growth, structure, and magnetic properties of a new polymorph of Fe2P2O7. Chem. Mater. 2003, 15, p. 3347.
[6]
Antraptseva, N. M.; Shchegrov, L. N.; Ponomareva, I. G. Thermolysis features of Manganese (II) and zinc dihydrogenphosphate solid solution. Russ. J. Inorg. Chem.2006, 51, p. 1493.
[7]
Trojan, M.; Brandova´, D. A study of thermal preparation of c-Mn2P4O12. J. Therm. Anal. Calorim.1985, 30, p.159.
[8]
Trojan, M. Double tetrametaphosphates Mn2-xCaxP4O12 as special pigments. Dyes Pigm.1990, 12, p.35.
[9]
Trojan, M. Binary cyclotetraphosphates Zn2-xCaxP4O12 as new special pigments. Dyes Pigm.1990, 13, p. 1.
[10]
Trojan, M.; Sÿulcova´, P.; Mosˇner, P. The synthesis of binary zinc-(II)-Nickel (II) cyclo-tetraphosphates as new special pigments. Dyes Pigm. 2000, 44, p. 161.
[11]
Trojan, M. A study of the reactions during formation of c-Ni2P4O12. Thermochim. Acta1990, 160, p. 361.
[12]
Trojan, M.; Brandova´, D. A study of the thermal preparation of c-Cd4/3Ca2/3P4O12. Thermochim. Acta1990, 160, p.349.
[13]
Trojan, M.; Sÿulcova´, P. Binary Cu (II)-Mn (II) cyclo-tetraphosphates. Dyes Pigm. 2000, 47, p. 291.
[14]
Trojan, M.; Brandova´, D.; Paulik, F.; Arnold. M. Mechanism of the thermal dehydration of Co1/2Ca1/2(H2PO4)2.2H2O. J. Therm. Anal. Calorim.1990, 36, p.929.
[15]
Trojan, M.; Brandova´, D. Mechanism of dehydration of Zn0.5- Mg0.5 (H2PO4)2â2H2O. Thermochim. Acta1990, 159, p. 1.
[16]
Brandova´, D.; Trojan, M.; Arnold, M.; Paulik, F. Thermal study of decomposition of Cu1/2Mg1/2(H2PO4)2.0.5 H2O. J. Therm. Anal. Calorim. 1990, 36, p. 677.
[17]
V. Ramakrishnan, G. Aruldhas, Vibrational spectra of Cu (II) and Co (II) tetrametaphosphates, Infrared Phys. 25 (1985) pp. 665–670.
[18]
E. J. Baran, R. C. Mercader, A. Massaferro, E. Kremer, Vibrational and 57Fe-Mössbauer spectra of some mixed cationdiphosphates of the typeMIIFe2III (P2O7)2, Spectrochim. Acta. 60 (2004) pp. 1001–1005.
[19]
E. H. Soumhi, I. Saadoune, A. Driss, A new organic-cationcyclotetraphosphate C10H28N4P4O12 4H2O: crystal structure, thermal analysis, and vibrational spectra, J. Solid State Chem. 156 (2001) pp. 364–369.
[20]
Averbuch-Pouchot, M. T., Durif, A.: Crystal structure of lead tetrapolyphosphate: Pb3P4O13. Acta Crystallogr. C43 (1987) pp. 631-632.
[21]
Chudinova, N. N., Lavrov, A. V., Tananaev, 1. V.: Reaction of bismuth oxide with phosphoric acid during heating. Izv. Akad. Nauk SSSR, Neorg. Mater. 8 (1972) pp.1971-1976.
[22]
Durif, A., Averbuch-Pouchot, M. T., Guitel, J. c.: Structure cristalline de (NH4hSiP 4013: unnouvelexemple de siliciumhexacoordine. Acta Crystallogr. B32 (1976) pp. 2957 - 2960.
[23]
Enraf-Nonius: Structure Determination Package. RSX 11M version. Enraf-Nonius, Delft (1977).
[24]
Hilmer, N., Chudinova, N. N., Jost, K. H.: Condensed bismuth phosphates. Izv. Akad. Nauk SSSR, Neorg. Mat. 14 (1978) pp.1507-1515.
[25]
International Tables for X-ray Crystallography (Present distributor D. Reidel, Dordrecht), Vol. IV, Birmingham: Kynoch Press (1974).
[26]
Palkina, K., Jost, K. H.: Crystal structure of the polyphosphaleBiH (P03k Acta Crystallogr. 831 (1975) pp. 2285 - 2290.
[27]
Schulz, 1.: Uberzweikristalline Tetraphosphate. Z. Anorg. Allg.Chern. 287 (1956) pp. 106-112.
[28]
Tezikova, L. A., Chudinova, N. N., Fedorov, P. M., Lavrov, A. V.: Bismuth acid pyrophosphate. Izv. Akad. Nauk SSSR, Neorg. Mat. 10 (1974) pp. 2057 -2063.
[29]
KhaledM. Elsabawy, NaderH. Elbagoury, Structure Visualization and AFM-Surface Microstructural Investigations on Ni-Ti-O Mixed Oxide With ABX3-Structure of Cast Ni- Superalloy, Adv. Appl. Science. Res., 2, 2 (2011) pp.38-47.
[30]
Khaled M. Elsabawy, Structure Visualization, Mechanical Strength Promotion and Raman Spectra of Hafnium Doped -123-YBCO Superconductor synthesized via Urea Precursor Route, Cryogenics, 51 (2011) pp.452-459.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931