Using the Hollomon Model to Predict Strain-Hardening in Metals
American Journal of Materials Synthesis and Processing
Volume 2, Issue 1, January 2017, Pages: 1-4
Received: Mar. 12, 2017; Accepted: Apr. 5, 2017; Published: Apr. 19, 2017
Views 376      Downloads 34
Authors
Raymond Kwesi Nutor, Department of Physics, Zhejiang Normal University, Jinhua, China
Nana Kwabena Adomako, Department of Advanced Materials Engineering, Hanbat National University, Daejeon, South Korea
Y. Z. Fang, Department of Physics, Zhejiang Normal University, Jinhua, China
Article Tools
Follow on us
Abstract
Stress – strain values obtained from tensile tests of aluminium and steel is used to evaluate the true stress – true strain values. The Hollomon’s model is then used to predict the strain-hardening behavior in the two specimens. It is clearly seen that the strain-hardening behavior in metals can be described using the Hollomon’s model. However, we have assumed that the onset of strain-hardening is at the yield point up until the ultimate tensile strength. The correlation between the experimental true stress – true strain values of aluminium and the calculated values using the Hollomon equation is much better than that of steel.
Keywords
Strain-Hardening, Tensile Strength, Hollomon’s Model
To cite this article
Raymond Kwesi Nutor, Nana Kwabena Adomako, Y. Z. Fang, Using the Hollomon Model to Predict Strain-Hardening in Metals, American Journal of Materials Synthesis and Processing. Vol. 2, No. 1, 2017, pp. 1-4. doi: 10.11648/j.ajmsp.20170201.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Mikell, P. Groover, Fundamentals of Modern Manufacturing Materials, Processes and Systems (2010), pp. 383-442.
[2]
Donald K. Askeland, Pradeep P. Fulay, and Wendelin J. Wright, The Science and Engineering of Materials (2010), pp. 198-307.
[3]
William D. Callister Jr., Materials Science and Engineering – An Introduction (2007), pp. 131-195.
[4]
Dowling N. E, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue, Prentice-Hall International, New Jersey (1993), pp. 555-690.
[5]
P. Ludwik, Elements der Technologischen Mechanik 32, Verlag Von Julius Springer, 1909 (Leipzig).
[6]
J. H. Hollomon, Tensile deformation, Trans. AIME 162 (1945), pp. 268-290.
[7]
E. Voce, The relationship between stress and strain for homogeneous deformation, J. Inst. Met. 74 (1948), pp. 537-562.
[8]
H. W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids 1 (1952) pp. 1-18.
[9]
E. Voce, A practical strain hardening function, Metallurgia 51 (1955), pp. 219-226.
[10]
D. C. Ludwigson, Modified stress-strain relation for FCC metals and alloys, Metall. Trans. 2 (1971), pp. 2825-2828.
[11]
U. F. Kocks, Laws for work-hardening and low-temperature creep, J. Eng. Mater. Technol. 98 (1976), pp. 76-85.
[12]
H. Mecking, U. F. Kocks, Kinetics of flow and strain-hardening, Acta Metall. Mater. 29 (1981), pp. 1865-1875.
[13]
S. Bruschi, T. Altan, D. Banabic, P. F. Bariani, A. Brosius, J. Cao, A. E. Tekkaya, Testing and modelling of material behavior and formability in sheet metal forming. CIRP Annals-Manufacturing Technology 2014: 63(2): 727-49.
[14]
B. Peeters, S. R. Kalidindi, C. Teodosiu, P. V. Houtte, E. Aernoudt, A theoretical investigation of the influence of dislocation sheets on evolution of yield surfaces in single-phase BCC polycrystals. J. Mech. Phys. Solids. 2002; 50: 783-807.
[15]
J. H. Kim, D. Kim, F. Barlat, M. Lee, Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels. Mater Sci Eng: A 2012; 539: 259-70.
[16]
B. Haddag, T. Balan, F. Abed-Meraim, Investigation of advanced strain-path dependent material models for sheet metal forming simulations. Int. J. Plast. 2007; 23: 951-79.
[17]
H. Song, T. Abe, J. Shimizu, N. Tada, T. Torii, Observation of microscopic plastic deformation of polycrystalline aluminium during uniaxial tension by confocal laser scanning microscope, Key Eng. Mater. (2004) 274-276.
[18]
S. Bouvier, J. L. Alves, M. C. Oliveira, L. F. Menezes, Modelling of anisotropic work-hardening behavior of metallic materials subjected to strain-path changes. Comput. Mater Sco. 2005; 32: 301-15.
[19]
G. B. Broggiato, F. Campana, L. Cortese, The Chaboche nonlinear kinematic hardening model: calibration methodology and validation. Meccanica 2008; 43: 115-24.
[20]
P. Eggertsen, K. Mattiasson, On constitutive modelling for Springback analysis. Int. J. Mech. Sci. 2010; 52: 804-18.
[21]
E. Silvestre, Sheet metal roll levelling process oprimization by means of advanced models. Mondragon University 2013.
[22]
P. Eggertsen, K. Mattiasson, On the identification of kinematic hardening material parameters for accurate Springback predictions. Int. J. Mater. Form. 2011;4: 103-20.
[23]
M. Sachtleber, Z. Zhao, D. Raabe, Experimental investigation of plastic grain interaction, Mater. Sci. Eng.: A 336 (1-2) (2002) 81-87.
[24]
E. Shapiro, F. N. Mandigo, Forming limit analysis for enhanced fabrication, Int. Copper Research Assoc., Olin Metals Research Laboratory, N. Y., (1983) 30-129.
[25]
W. M. Sing, K. P. Rao, Influence of material properties on sheet metal formability limits, J. Mat. Proc. Tech., 48 (1995) 35-41.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931