Small Gain Theorem for Distributed Feedback Control of Sturm-Liouville Dynamics
Applied and Computational Mathematics
Volume 3, Issue 5, October 2014, Pages: 217-224
Received: Aug. 20, 2014; Accepted: Sep. 10, 2014; Published: Sep. 20, 2014
Views 2715      Downloads 170
Boe-Shong Hong, Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 62012, Taiwan
Article Tools
Follow on us
This paper constructs the small-gain theorem upon a general class of Sturm-Liouville systems. It appears that the feedback connection of two Sturm-Liouville sub-systems is guaranteed of well-posedness, Hurwitz, dissipativity and passivity in L2-spaces provided the loop gain is less than 1. To construct the theorem, spatiotemporal transfer-function and geometrical isomorphism between the space-time domain and the mode-frequency domain are developed, whereof the H∞-norm is extended to be 2D-H∞ norm in mode-frequency domain. On grounds of this small-gain theorem, robust performance of any Sturm-Liouville plant can be formulated as robust stability of a feedback connection, whereupon feedback syntheses can be performed via modal-spectral μ-loopshaping.
Small Gain Theorem, Distributed Control, Robust Control, nD Transfer Function
To cite this article
Boe-Shong Hong, Small Gain Theorem for Distributed Feedback Control of Sturm-Liouville Dynamics, Applied and Computational Mathematics. Vol. 3, No. 5, 2014, pp. 217-224. doi: 10.11648/j.acm.20140305.14
H. K. Khalil, Nonlinear Systems Second Edition, Prentice-Hall Inc., Upper Saddle River, New Jersey, 1996.
A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science, Springer-Verlag New York Inc., New York, 1982.
J. Doyle, B. Francis, A. Tannenbaum, Feedback Control Theory, Macmillan, New York, 1992.
K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall Inc., Upper Saddle River, New Jersey, 1996.
B.-S. Hong, P.-J. Su, C.-Y. Chou, C.-I. Hung, Realization of non-Fourier phenomena in heat transfer with 2D transfer function, Appl. Math. Model. 35 (8) (2011) 4031-4043.
C.-Y. Chou, System Identification and Feedback Control of Non-Fourier Heat Transfer with 2D Transfer Function, Doctoral Dissertation, National Chung Cheng University, Taiwan, 2012.
B.-S. Hong, C.-Y. Chou, T.-Y. Lin, 2D transfer function modeling of thermoacoustic vibration engines with boundary heat-flux control, Asian J. Control (to appear).
A. Preumont, A. François, P. De Man, N. Loix, K. Henrioulle, Distributed sensors with piezoelectric films in design of spatial filters for structural control, J. Sound Vibr. 282 (3-5) (2005) 701-712.
A.W. Brown, B.G. Colpitts, K. Brown, Distributed sensor based on dark-pulse Brillouin scattering, IEEE Photon. Technol. Lett. 17 (7) (2005) 1501-1503.
T.V. karnaukhova, E.V. Pyatetskaya, Basic relations of the theory of thermoviscoelastic plates with distributed sensors, Int. Appl. Mech. 45 (6) (2009) 660-669.
T.V. Karnaukhova, E.V. Pyatetskaya, Basic equations for termoviscoelastic plates with distributed actuators under monoharmonic loading, Int. Appl. Mech. 45 (2) (2009) 200-214.
C. Menon, F. Carpi, D.D. Rossi, Concept design of novel bio-inspired distributed actuators for space applications, Acta Astronaut. 65 (5-6) (2009) 825-833.
R. Rabenstein, L. Trautmann, Multidimensional transfer function models, IEEE Trans. Circuits Syst. Fund. Theor. Appl. 49 (6) (2002) 852-861.
R. Rabenstein, L. Trautmann, Digital sound synthesis of string instruments with the functional transformation method, Signal Process. 83 (8) (2003) 1673-1688.
B.-S. Hong, Construction of 2D isomorphism for 2D H1 -control of Sturm-Liouville Systems, Asian J. Control 12 (2) (2010) 187-199.
B. Bamieh, F. Paganini, M.A. Dahleh, Distributed control of spatially invariant systems, IEEE Trans. Autom. Control 47 (7) (2002) 1091-1107.
D.M. Gorinevsky, G. Stein, Structured uncertainty analysis of robust stability for multidimensional array systems, IEEE Trans. Autom. Control 48 (9) (2003) 1557-1568.
G.E. Stewart, D.M. Gorinevsky, G.A. Dumont, Two-dimensional loop shaping, Automatica 39 (5) (2003) 779-792.
G.E Stewart, D.M. Gorinevsky, G.A Dumont, Feedback controller design for a spatially distributed system: the paper machine problem, IEEE Trans. Control. Syst. Technol. 11 (5) (2003) 612-628.
D.M. Gorinevsky, S. Boyd, G. Stein, Design of low-bandwidth spatially distributed feedback, IEEE Trans. Autom. Control 53 (1) (2008) 257 - 272.
F.M. Callier, C.A. Desoer, An algebra of transfer functions for distributed linear time-invariant systems, IEEE Trans. Circuits Syst. 25 (9) (1978) 651-662.
F.M. Callier, J. Winkin, LQ-optimal control of infinite-dimensional systems by spectral factorization, Automatica 28 (4) (1992) 757-770.
F.M. Callier, L. Dumortier, J. Winkin, On the nonnegative self-adjoint solutions of the operator Riccati equation for infinite dimensional systems, Integr. Equ. Oper. Theory 22 (2) (1995) 162–195.
P. Grabowski, F.M. Callier, Boundary control systems in factor form: transfer functions and input-output maps, Integr. Equ. Oper. Theory 41 (1) (2001) 1–37.
I. Podlubny, Fractional-order systems and -controllers, IEEE Trans. Autom. Control 44 (1) (1999) 208-214.
D. Valerio, J.S. da Costa, Tuning of fractional Controllers Minimising H2 and H1 Norms, Acta Polytech. Hung. 3 (4) 2006 55-70.
B.M. Vinagre, V. Feliu, Optimal fractional controllers for rational order system: a special case of the Wiener-Hopf spectral factorization method, IEEE Trans. Autom. Control 52 (12) (2007) 2385-2389.
C.A. Monje, B.M. Vinagre, V. Feliu, Y.-Q. Chen, Tuning and auto-tuning of fractional order controllers for industry applications, Control Eng. Practice 16 (2008) 798-812.
F. Padula, A. Visioli, Tuning rules for optimal PID and fractional-order PID controllers, J. Process Control 21 (2011) 69-81.
M.E. Valcher, On the internal stability and asymptotic behavior of 2-D positive systems, IEEE Trans. Circuits Syst. 44 (7) (1997) 602-613.
M.E. Valcher, State-space descriptions and observability properties of spatiotemporal finite-dimensional autonomous behaviors, Syst. Control Lett. 44 (2) (2001) 91-102.
E. Fornasini, M.E. Valcher, Controllability and reachability of 2-D positive system: A Graph Theoretic Approach, IEEE Trans. Circuits Syst. 52 (3) (2005) 576-585.
P. Lancaster, I. Zaballa, Diagonalizable quadratic eigenvalue problems, Mech. Syst. Signal Pr. 23 (4) (2009) 1134-1144.
J. Carlos, Z. Anaya, Diagonalization of quadratic matrix polynomials, Syst. Control Lett. 59 (2) (2010) 105-113.
Z. Shu, J. Lam, H. Gao, B. Du, L. Wu, Positive observers and dynamic output-feedback controllers for interval positive linear systems, IEEE T. Circuits.-I 55 (10) (2008) 3209-3222.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186