Occurrence of Galilean Geometry
Applied and Computational Mathematics
Volume 2, Issue 5, October 2013, Pages: 115-117
Received: Jul. 24, 2013; Published: Sep. 10, 2013
Views 2982      Downloads 113
Authors
Abdullaaziz Artıkbayev, Department of Mathematics, Railway Inst., Tashkent, Uzbekistan
Abdullah Kurudirek, Department of Mathematics Education, Ishik University, Arbil, Iraq
Hüseyin Akça, Department of Mathematics Education, Ishik University, Arbil, Iraq
Article Tools
PDF
Follow on us
Abstract
The main difference of Galilean geometry is its relative simplicity, for it enables the student to study it in relative detail without losing a great deal of time and intellectual energy. In this paper, we introduce you with new geometric(non-Euclidean) ideas which exist in affine plane and more simple than Euclidean plane.
Keywords
Non-Euclidean Geometry, Galilean Geometry, Affine Plane, Isotropic, Minkowski Space
To cite this article
Abdullaaziz Artıkbayev, Abdullah Kurudirek, Hüseyin Akça, Occurrence of Galilean Geometry, Applied and Computational Mathematics. Vol. 2, No. 5, 2013, pp. 115-117. doi: 10.11648/j.acm.20130205.11
References
[1]
Riemann, В., Uber die Hypothesen, welche der Geometrie zu Grunde liegen. Springer, Berlin, 1923.
[2]
Klein, F., "Uber die sogenannte Nicht-Euklidische Geometrie," Gesammelte Math Abh I: 254-305, 311-343, 344-350, 353-383, 1921.
[3]
Klein, F., Vorlesungen iiber nicht-Euklidische Geometrie. Springer, Berlin, 1928.
[4]
Klein, F., Vergleichende Betrachtungen uber neure geometrische Forschungen. Gesammelte mathematische Abhandlungen, Vol. I, 1921, pp. 460-497. (English version is found in Sommerville, D. Μ. Υ., Bibliography of Non-Euclidean Geometry, 2nd ed., Chelsea, New York, 1970.)
[5]
Yaglom, I.M. A Simple Non-Euclidean Geometry and Its Physical Basis, by Springer-Verlag New York Inc. 1979.
[6]
Vincent Hugh. Using Geometric Algebra to Interactively Model the Geometry of Euclidean and non-Euclidean Spaces. February, 2007.
[7]
Артыкбаев А. Соколов Д.Д. Геометрия в целом в плоском пространстве-времени. Ташкент. Изд. «Фан». 1991 г.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186