| Peer-Reviewed

Land Use and Land Cover Change Within and Around the Greater Serengeti Ecosystem, Tanzania

Received: 3 March 2020    Accepted: 20 March 2020    Published: 29 April 2020
Views:       Downloads:
Abstract

Land use and land cover (LULC) changes can pose profound impacts on wildlife habitats, abundance and distribution and on human-dominated landscapes. We investigated LULC changes in the Greater Serengeti ecosystem, Tanzania, for a period of 41 years from 1975 to 2015. Specifically, we mapped LULC types for 1975, 1995 and 2015 and assessed the corresponding changes during 1975-1995, 1995-2015 and 1975-2015. We used the random forest classification algorithm to classify Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (+ETM) and Operational Land Imager (OLI) into eight main classes. We obtained accuracies of 88.4%, 90.6% and 93.4% with Kappa Indices of Agreement (KIA) of 0.86, 0.87 and 0.91 for 1975, 1995 and 2015, respectively. Grassland, shrubland and woodland were the major LULC types throughout 1975-2015 with percentage coverages of 50.6%, 23.7% and 20.9% for 1975; 54.2%, 23.5% and 15.9% for 1995; and 57.0%, 23.8% and 8.9% for 2015, respectively. Overall, woodland cover (-11.1%) was converted to most of the other cover types during 1975-2015. The loss of woodland cover is due to increasing human population size, agriculture, settlements and policy changes fires and elephant browsing. Effective conservation policies and regulation of socio-economic activities in the ecosystem and its buffer area are essential to ameliorate declining vegetation cover, especially along the protected areas boundaries.

Published in American Journal of Remote Sensing (Volume 8, Issue 1)
DOI 10.11648/j.ajrs.20200801.11
Page(s) 1-19
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Land Use and Cover Change, Land Cover Transformation, Random Forest Classification, GIS and Remote Sensing, Serengeti Ecosystem, Wildlife Habitats

References
[1] Phukan, P., Thakuriah, G., and Saikia, R., Land use land cover change detection using remote sensing and GIS techniques-A case study of Golaghat district of Assam, India. International Research Journal of Earth Sciences, 2013. 1 (1): 11-15.
[2] Nduati, E. W., Mundia, C. N., and Ngigi, M. M., Effects of vegetation change and land use/land cover change on land surface temperature in the mara ecosystem. International Journal of Science and Research 2013. 2: 22-28.
[3] Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., and Kinzig, A., Global biodiversity scenarios for the year 2100. Science, 2000. 287 (5459): 1770-1774.
[4] Hamilton, C. M., Martinuzzi, S., Plantinga, A. J., Radeloff, V. C., Lewis, D. J., Thogmartin, W. E., Heglund, P. J., and Pidgeon, A. M., Current and future land use around a nationwide protected area network. PLOS ONE, 2013. 8 (1): e55737.
[5] Kidane, Y., Stahlmann, R., and Beierkuhnlein, C., Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environmental monitoring and assessment, 2012. 184 (12): 7473-7489.
[6] Veldhuis, M. P., Ritchie, M. E., Ogutu, J. O., Morrison, T. A., Beale, C. M., Estes, A. B., Mwakilema, W., Ojwang, G. O., Parr, C. L., Probert, J., Wargute, P. W., Hopcraft, J. G. C., and Olff, H., Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science, 2019. 363 (6434): 1424-1428.
[7] Sinclair, A. R. E. and Arcese, P., Serengeti II: dynamics, management, and conservation of an ecosystem. Vol. 2. 1995: University of Chicago Press.
[8] Kideghesho, J. R., Nyahongo, J. W., Hassan, S. N., Tarimo, T. C., and Mbije, N. E., Factors and ecological impacts of wildlife habitat destruction in the Serengeti ecosystem in northern Tanzania. African Journal of Environmental Assessment and Management, 2006. 11: 17-32.
[9] Campbell, K. and Borner, M., Population trends and distribution of Serengeti herbivores: implications for management. Serengeti II: Dynamics, management, and conservation of an ecosystem, 1995: 117-145.
[10] Kija, H. K., Ogutu, J. O., Mangewa, L. J., Bukombe, J., Verones, F., Graae, B. J, Kideghesho, J. R., Said, M. Y., and Nzunda, E. F., Spatio-Temporal Changes in Wildlife Habitat Quality in the Greater Serengeti Ecosystem. Sustainability, 2020. 12 (6): 1-18.
[11] Mayunga, S. D., Monitoring of Land Use/Cover Change Using Remote Sensing and GIS techniques: A case study of Loliondo Game Controlled Area, Tanzania. Trends Journal of Sciences Research, 2018. 3 (1): 18-32.
[12] Estes, A. B., Kuemmerle, T., Kushnir, H., Radeloff, V. C., and Shugart, H. H., Land-cover change and human population trends in the greater Serengeti ecosystem from 1984–2003. Biological Conservation, 2012. 147 (1): 255-263.
[13] Reed, D. N., Anderson, T. M., Dempewolf, J., Metzger, K., and Serneels, S., The spatial distribution of vegetation types in the Serengeti ecosystem: the influence of rainfall and topographic relief on vegetation patch characteristics. Journal of Biogeography, 2009. 36 (4): 770-782.
[14] Byrom, A. E., Nkwabi, A. J., Metzger, K., Mduma, S. A., Forrester, G. J., Ruscoe, W. A., Reed, D. N., Bukombe, J., Mchetto, J., and Sinclair, A., Anthropogenic stressors influence small mammal communities in tropical East African savanna at multiple spatial scales. Wildlife Research, 2015. 42 (2): 119-131.
[15] Serneels, S., Said, M., and Lambin, E., Land cover changes around a major east African wildlife reserve: the Mara Ecosystem (Kenya). International Journal of Remote Sensing, 2001. 22 (17): 3397-3420.
[16] Sinclair, A., Hopcraft, J. G. C., Olff, H., Mduma, S. A., Galvin, K. A., and Sharam, G. J., Historical and future changes to the Serengeti ecosystem. Serengeti III: Human impacts on ecosystem dynamics, 2008: 7-46.
[17] Sinclair, A., Packer, C., Mduma, S. A., and Fryxell, J. M., Serengeti III: human impacts on ecosystem dynamics. 2009: University of Chicago Press.
[18] Estes, A. B., Using remote sensing to uncover the drivers of land-cover change and elephant habitat use in the Serengeti ecosystem. Unpublished Thesis for Award of PhD Degree at University of Virginia, United States of America. 2012. pp. 152.
[19] Fryxell, J. M., Wilmshurst, J. F., and Sinclair, A. R., Predictive models of movement by Serengeti grazers. Ecology, 2004. 85 (9): 2429-2435.
[20] Gottschalk, T. K., Ekschmitt, K., and Bairlein, F., A GIS-based model of Serengeti grassland bird species. Ostrich-Journal of African Ornithology, 2007. 78 (2): 259-263.
[21] Kikula, I. S., Policy Implications on Environment. The Case of Villagization in Tanzania. 1997, DUP (1996) LTD, University of Dar es Salaam, Tanzania.
[22] Msoffe, F. U., Said, M. Y., Ogutu, J. O., Kifugo, S. C., De Leeuw, J., Van Gardingen, P., and Reid, R., Spatial correlates of land-use changes in the Maasai-Steppe of Tanzania: Implications for conservation and environmental planning. International Journal of Biodiversity and Conservation, 2011. 3 (7): 280-290.
[23] Leyaro, V. and Morrissey, O., Expanding agricultural production in Tanzania. 2013.
[24] Mtui, D. T., Evaluating landscape and wildlife changes over time in Tanzania's protected areas. 2014, [Honolulu]:[University of Hawaii at Manoa],[December 2014].
[25] Norton-Griffiths, M., Herlocker, D., and Pennycuick, L., The patterns of rainfall in the Serengeti ecosystem, Tanzania. African Journal of Ecology, 1975. 13 (3-4): 347-374.
[26] Ogutu, J. O., Piepho, H. P., Dublin, H. T., Bhola, N., and Reid, R. S., Rainfall influences on ungulate population abundance in the Mara-Serengeti ecosystem. J Anim Ecol, 2008. 77 (4): 814-29.
[27] Herlocker, D. J., Structure, composition, and environment of some woodland vegetation types of the Serengeti National Park, Tanzania. 1976: Herlocker.
[28] Gottschalk, T. K., Ekschmitt, K., and Bairlein, F., Relationships between vegetation and bird community composition in grasslands of the Serengeti. African journal of ecology, 2007. 45 (4): 557-565.
[29] Thirgood, S., Mosser, A., Tham, S., Hopcraft, G., Mwangomo, E., Mlengeya, T., Kilewo, M., Fryxell, J., Sinclair, A. R. E., and Borner, M., Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Animal Conservation, 2004. 7 (02): 113-120.
[30] Chander, G., Markham, B. L., and Helder, D. L., Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 2009. 113 (5): 893-903.
[31] Pons, X., Pesquer, L., Cristóbal, J., and González-Guerrero, O., Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation, 2014. 33: 243-254.
[32] Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., and Evangelista, P. H., A survival guide to Landsat preprocessing. Ecology, 2017. 98 (4): 920-932.
[33] Chavez, P. S., Image-based atmospheric corrections-revisited and improved. Photogrammetric engineering and remote sensing, 1996. 62 (9): 1025-1035.
[34] Franklin, S. E. and Giles, P. T., Radiometric processing of aerial and satellite remote-sensing imagery. Computers & Geosciences, 1995. 21 (3): 413-423.
[35] Amro, I., Mateos, J., Vega, M., Molina, R., and Katsaggelos, A. K., A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP Journal on Advances in Signal Processing, 2011. 2011 (1): 79.
[36] Pons, X. and Solé-Sugrañes, L., A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data. Remote sensing of Environment, 1994. 48 (2): 191-204.
[37] Riaño, D., Chuvieco, E., Salas, J., and Aguado, I., Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE Transactions on geoscience and remote sensing, 2003. 41 (5): 1056-1061.
[38] Shepherd, J. and Dymond, J., Correcting satellite imagery for the variance of reflectance and illumination with topography. International Journal of Remote Sensing, 2003. 24 (17): 3503-3514.
[39] Jensen, J. R., Thematic information extraction: Image classification. Introductory Digital Image Processing: A Remote Sensing Perspective, 1996: 197-256.
[40] Ekstrand, S., Landsat TM-based forest damage assessment: correction for topographic effects. Photogrammetric Engineering and Remote Sensing, 1996. 62 (2): 151-162.
[41] Gao, Y. and Zhang, W., LULC classification and topographic correction of Landsat-7 ETM+ imagery in the Yangjia River Watershed: the influence of DEM resolution. Sensors, 2009. 9 (3): 1980-1995.
[42] PCI, PCI Geomatics Software, in PCI Geomatics, Ontario. 2015: Canada.
[43] Congalton, R. G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991. 37 (1): 35-46.
[44] Thomlinson, J. R., Bolstad, P. V., and Cohen, W. B., Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products. Remote Sensing of Environment, 1999. 70 (1): 16-28.
[45] Blaschke, T., Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 2010. 65 (1): 2-16.
[46] Horning, N. Random Forests: An algorithm for image classification and generation of continuous fields data sets. in Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Osaka, Japan. 2010.
[47] Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., and Lawler, J. J., Random forests for classification in ecology. Ecology, 2007. 88 (11): 2783-2792.
[48] Frakes, R. A., Belden, R. C., Wood, B. E., and James, F. E., Landscape Analysis of Adult Florida Panther Habitat. PLOS ONE, 2015. 10 (7).
[49] Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J. P., An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2012. 67: 93-104.
[50] Pangelova, B. and Rogan, J. Land cover and land use change detection and analyses in Plovdiv, Bulgaria, between 1986 and 2000. in Proceedings from Annual Conference of the American Society for Photogrammetry and Remote Sensing. 2006.
[51] Rodriguez-Galiano, V., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M., and Jeganathan, C., Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 2012. 121: 93-107.
[52] Lillesand, T., Kiefer, R., and Chipman, J., Digital image interpretation and analysis. Remote sensing and image interpretation, 2008. 6: 545-81.
[53] Lu, D., Weng, Q., Moran, E., Li, G., and Hetrick, S., Remote sensing image classification. 2011: CRC Press/Taylor and Francis: Boca Raton, FL, USA.
[54] Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A., Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 2014. 148: 42-57.
[55] Shalaby, A. and Tateishi, R., Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 2007. 27 (1): 28-41.
[56] Foody, G. M., Status of land cover classification accuracy assessment. Remote sensing of environment, 2002. 80 (1): 185-201.
[57] Tateishi, R., Tsend-Ayush, J., Ghar, M. A., Al-Bilbisi, H., and Okatani, T., Sampling Methods for Validation of Large Area Land Cover Mapping. Journal of The Remote Sensing Society of Japan, 2007. 27 (3): 195-204.
[58] Lillesand, T., Kiefer, R. W., and Chipman, J., Remote sensing and image interpretation. 2015: John Wiley & Sons.
[59] Congedo, L., Semi-Automatic Classification Plugin for QGIS. Sapienza University, Rome. 2013.
[60] Tekle, K. and Hedlund, L., Land Cover Changes Between 1958 and 1986 in Kalu District, Southern Wello, Ethiopia. Mountain Research and Development, 2000. 20 (1): 42-51.
[61] McNaughton, S., Serengeti grassland ecology: the role of composite environmental factors and contingency in community organization. Ecological monographs, 1983. 53 (3): 291-320.
[62] Metzger, K. L., Sinclair, A. R., Macfarlane, A., Coughenour, M., and Ding, J., Scales of change in the Greater Serengeti ecosystem. Serengeti IV: Sustaining Biodiversity in a Coupled Human–Natural System’. (Eds ARE Sinclair, KL Metzger, JM Fryxell and SAR Mduma.) pp, 2015: 33-71.
[63] Michael Anderson, T., Metzger, K. L., and McNaughton, S. J., Multi-scale analysis of plant species richness in Serengeti grasslands. Journal of Biogeography, 2007. 34 (2): 313-323.
[64] Ogutu, J. O., Piepho, H. P., Dublin, H. T., Bhola, N., and Reid, R. S., Dynamics of Mara-Serengeti ungulates in relation to land use changes. Journal of Zoology, 2009. 278 (1): 1-14.
[65] Bartzke, G. S., Ogutu, J. O., Mukhopadhyay, S., Mtui, D., Dublin, H. T., and Piepho, H. P., Rainfall trends and variation in the Maasai Mara ecosystem and their implications for animal population and biodiversity dynamics. PLOS ONE, 2018. 13 (9): e0202814.
[66] Rutina, L. P., Moe, S. R., and Swenson, J. E., Elephant Loxodonta africana driven woodland conversion to shrubland improves dry-season browse availability for impalas Aepyceros melampus. Wildlife Biology, 2005. 11 (3): 207-213.
[67] Arndt, C., Farmer, W., Strzepek, K., and Thurlow, J., Climate change, agriculture and food security in Tanzania. 2012: The World Bank.
[68] Luoga, E. J., Witkowski, E. T. F., and Balkwill, K., Land Cover and Use Changes in Relation to the Institutional Framework and Tenure of Land and Resources in Eastern Tanzania Miombo Woodlands. Environment, Development and Sustainability, 2005. 7 (1): 71-93.
[69] McCabe, J. T., Leslie, P. W., and DeLuca, L., Adopting cultivation to remain pastoralists: the diversification of Maasai livelihoods in northern Tanzania. Human ecology, 2010. 38 (3): 321-334.
[70] Homewood, K., Kristjanson, P., and Trench, P. C., Changing Land Use, Livelihoods and Wildlife Conservation in Maasailand. 2009. 5: 1-42.
[71] Homewood, K., Lambin, E. F., Coast, E., Kariuki, A., Kikula, I., Kivelia, J., Said, M., Serneels, S., and Thompson, M., Long-term changes in Serengeti-Mara wildebeest and land cover: pastoralism, population, or policies? Proc Natl Acad Sci USA, 2001. 98 (22): 12544-9.
[72] Oglethorpe, J., Ericson, J., Bilsborrow, R. E., and Edmond, J., People on the move: Reducing the impacts of human migration on biodiversity. World Wildlife Fund and Conservation International Foundation, Washington, DC, 2007.
[73] Scholte, P. and de Groot, W. T., From Debaste to Insight: There Models of Immigration to Protected Areas. Conservation Biology, 2010. 24 (2): 630-632.
[74] Ntongani, W. A., Munishi, P. K., and Mbilinyi, B. P., Land use changes and conservation threats in the eastern Selous–Niassa wildlife corridor, Nachingwea, Tanzania. African journal of ecology, 2010. 48 (4): 880-887.
[75] Serneels, S. and Lambin, E. F., Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agriculture, Ecosystems & Environment, 2001. 85 (1): 65-81.
[76] Mugagga, F., Kakembo, V., and Buyinza, M., Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. Catena, 2012. 90: 39-46.
[77] Mussa, M., Teka, H., and Mesfin, Y., Land use/cover change analysis and local community perception towards land cover change in the lowland of Bale rangelands, Southeast Ethiopia. International Journal of Biodiversity and Conservation, 2017. 9 (12): 363-372.
[78] Odada, E. O., Ochola, W. O., and Olago, D. O., Drivers of ecosystem change and their impacts on human well-being in Lake Victoria basin. African Journal of Ecology, 2009. 47: 46-54.
[79] Warra, H., Mohammed, A., and D Nicolau, M., Spatio-temporal Impact of Socio-economic practices on land use/cover in the Kasso catchment, Bale Mountains, Ethiopia. Analele stiintifice ale Universitatii" Alexandru Ioan Cuza" din Iasi-seria Geografie, 2013. 59 (1): 95-120.
[80] Ogutu, J., Owen-Smith, N., Piepho, H.-P., Said, M. Y., Kifugo, S. C., Reid, R. S., Gichohi, H., Kahumbu, P., and Andanje, S., Changing wildlife populations in Nairobi national park and adjoining Athi-Kaputiei plains: Collapse of the migratory Wildebeest. The Open Conservation Biology Journal, 2013. 7 (1).
[81] Said, M. Y., Ogutu, J. O., Kifugo, S. C., Makui, O., Reid, R. S., and de Leeuw, J., Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. Journal for Nature Conservation, 2016. 34: 151-164.
[82] Msoffe, F. U., Kifugo, S. C., Said, M. Y., Neselle, M. O., Van Gardingen, P., Reid, R. S., Ogutu, J. O., Herero, M., and De Leeuw, J., Drivers and impacts of land-use change in the Maasai Steppe of northern Tanzania: an ecological, social and political analysis. Journal of Land Use Science, 2011. 6 (4): 261-281.
[83] Njamasi, Y. R., The impact of human activities on wildlife in Kwakuchinja migratory corridor-Tarangire/Manyara ecosystem (TME), Northern Tanzania. 2015, Department of Wildlife Management and Conservation, Sokoine University of Agriculture, Tanzania.
[84] Ariti, A. T., van Vliet, J., and Verburg, P. H., Land-use and land-cover changes in the Central Rift Valley of Ethiopia: Assessment of perception and adaptation of stakeholders. Applied Geography, 2015. 65: 28-37.
[85] Fisseha, G., Gebrekidan, H., Kibret, K., Yitaferu, B., and Bedadi, B., Analysis of land use/land cover changes in the Debre-Mewi watershed at the upper catchment of the Blue Nile Basin, North West Ethiopia. J. Biodivers. Environ. Sci, 2011. 1 (6): 184-198.
[86] Forkuor, G. and Cofie, O., Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture a remote sensing approach. International Journal of Remote Sensing, 2011. 32 (4): 1017-1037.
[87] Kamusoko, C. and Aniya, M., Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe. Land degradation & development, 2007. 18 (2): 221-233.
[88] Mwavu, E. and Witkowski, E., Land-use and cover changes (1988–2002) around Budongo forest reserve, NW Uganda: Implications for forest and woodland sustainability. Land degradation & development, 2008. 19 (6): 606-622.
[89] Zoungrana, B. J., Conrad, C., Amekudzi, L. K., Thiel, M., Da, E. D., Forkuor, G., and Löw, F., Multi-temporal landsat images and ancillary data for land use/cover change (LULCC) detection in the Southwest of Burkina Faso, West Africa. Remote Sensing, 2015. 7 (9): 12076-12102.
[90] Miheretu, B. A. and Yimer, A. A., Land use/land cover changes and their environmental implications in the Gelana sub-watershed of Northern highlands of Ethiopia. Environmental Systems Research, 2017. 6 (1).
[91] Ruess, R. and Halter, F., The impact of large herbivores on the Seronera woodlands, Serengeti National Park, Tanzania. African Journal of Ecology, 1990. 28 (4): 259-275.
[92] TAWIRI, Aerial Survey in the Serengeti ecosystem (Unpublished report). Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania. 2018.
[93] Barnes, R., Effects of elephant browsing on woodlands in a Tanzanian National Park: measurements, models and management. Journal of Applied Ecology, 1983: 521-539.
[94] Barnes, R., Woodland changes in Ruaha National park (Tanzania) between 1976 and 1982. African Journal of Ecology, 1985. 23 (4): 215-221.
[95] Prins, H. H. and van der Jeugd, H. P., Herbivore population crashes and woodland structure in East Africa. Journal of Ecology, 1993: 305-314.
[96] Lamprey, H., Glover, P. E., Turner, M. I., and Bell, R. H., Invasion of the Serengeti National Park by elephants. African Journal of Ecology, 1967. 5 (1): 151-166.
[97] Norton-Griffiths, M., The influence of grazing, browsing, and fire on the vegetation dynamics of the Serengeti. Serengeti: dynamics of an ecosystem. University of Chicago Press, Chicago, 1979: 310-352.
[98] Dublin, H. T., Vegetation dynamics in the Serengeti-Mara ecosystem: the role of elephants, fire, and other factors, in Serengeti II: dynamics, management, and conservation of an ecosystem. University of Chicago Press, Chicago. 1995. p. 71-90.
[99] Walpole, M. J., Nabaala, M., and Matankory, C., Status of the Mara woodlands in Kenya. African Journal of Ecology, 2004.
[100] Abbot, J. I. and Homewood, K., A history of change: causes of miombo woodland decline in a protected area in Malawi. Journal of Applied Ecology, 1999. 36 (3): 422-433.
[101] Morrison, T. A., Holdo, R. M., and Anderson, T. M., Elephant damage, not fire or rainfall, explains mortality of overstorey trees in Serengeti. Journal of Ecology, 2016. 104 (2): 409-418.
[102] Lemessa, D., Asmelash, F., Teka, Y., Alemu, S., Didita, M., and Melesse, S., Woody Species Composition in Relation to Spatial and Environmental Gradients in Acacia-Commiphora Vegetation Ecosystem of Ethiopia.
[103] Guldemond, R. and Van Aarde, R., A meta-analysis of the impact of African elephants on savanna vegetation. The Journal of Wildlife Management, 2008. 72 (4): 892-899.
[104] Scholtz, R., Kiker, G., Smit, I., and Venter, F., Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa. Ecosphere, 2014. 5 (6): 1-12.
[105] Dublin, H. T., Dynamics of the Serengeti-Mara woodlands: an historical perspective. Forest & Conservation History, 1991. 35 (4): 169-178.
[106] Dublin, H. T., Sinclair, A. R., and McGlade, J., Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. The Journal of Animal Ecology, 1990: 1147-1164.
[107] Ogutu, J., Piepho, H. P., Dublin, H., Bhola, N., and Reid, R., El Niño-Southern Oscillation, rainfall, temperature and Normalized Difference Vegetation Index fluctuations in the Mara-Serengeti ecosystem. African Journal of Ecology, 2008. 46 (2): 132-143.
[108] de Leeuw, J., Waweru, M. N., Okello, O. O., Maloba, M., Nguru, P., Said, M. Y., Aligula, H. M., Heitkönig, I. M., and Reid, R. S., Distribution and diversity of wildlife in northern Kenya in relation to livestock and permanent water points. Biological Conservation, 2001. 100 (3): 297-306.
[109] Mtui, D. T., Lepczyk, C. A., Chen, Q., Miura, T., and Cox, L. J., Assessing multi-decadal land-cover - land-use change in two wildlife protected areas in Tanzania using Landsat imagery. PLOS ONE, 2017. 12 (9).
[110] Joppa, L., Population change in and around protected areas. Journal of Ecological Anthropology, 2012. 15 (1): 58-64.
[111] Sinclair, A. R., Mduma, S. A., and Arcese, P., Protected areas as biodiversity benchmarks for human impact: agriculture and the Serengeti avifauna. Proceedings of the Royal Society of London B: Biological Sciences, 2002. 269 (1508): 2401-2405.
[112] Soka, G. E. and Ritchie, M. E., Land-Cover legacy effects on arbuscular mycorrhizal abundance in human and wildlife dominated systems in tropical savanna. Advances in Ecology, 2016. 2016.
[113] Campbell, B. M., The Miombo in transition: woodlands and welfare in Africa. 1996: CIFOR.
[114] Mitchell, J. E., Rangeland resource trends in the United States: A technical document supporting the 2000 USDA Forest Service RPA Assessment. 2000: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
[115] Sinclair, A. R. E. and Norton-Griffiths, M., Serengeti: dynamics of an ecosystem. 1984: University of Chicago Press.
[116] Mwalyosi, R. B., Land-use changes and resource degradation in south–west Masailand, Tanzania. Environmental Conservation, 1992. 19 (2): 145-152.
[117] Holdo, R. M., Holt, R. D., and Fryxell, J. M., Grazers, browsers, and fire influence the extent and spatial pattern of tree cover in the Serengeti. Ecological Applications, 2009. 19 (1): 95-109.
[118] Nzunda, N. G., Socio-economic factors influencing land use and vegetation cover changes in and around Kagoma Forest Reserve Kagera region, Tanzania. 2011, Sokoine University of Agriculture (SUA).
[119] Sankaran, M., Ratnam, J., and Hanan, N., Woody cover in African savannas: the role of resources, fire and herbivory. Global Ecology and Biogeography, 2008. 17 (2): 236-245.
[120] Van Langevelde, F., Van De Vijver, C. A., Kumar, L., Van De Koppel, J., De Ridder, N., Van Andel, J., Skidmore, A. K., Hearne, J. W., Stroosnijder, L., and Bond, W. J., Effects of fire and herbivory on the stability of savanna ecosystems. Ecology, 2003. 84 (2): 337-350.
[121] Cumming, D. H., Fenton, M. B., Rautenbach, I. L., Taylor, R. D., Cumming, G. S., Cumming, M. S., Dunlop, J. M., Ford, A. G., Hovorka, M. D., and Johnston, D. S., Elephants, woodlands and biodiversity in southern Africa. South African Journal of Science, 1997. 93 (5): 231-236.
[122] Zyambo, P., Woodland Conversion by Elephants in Africa: The Search for Causal Factors, Processes, Mechanisms and Management Strategies. Open Journal of Ecology, 2016. 06 (02): 93-101.
[123] Van de Koppel, J. and Prins, H. H., The importance of herbivore interactions for the dynamics of African savanna woodlands: an hypothesis. Journal of Tropical Ecology, 1998. 14 (5): 565-576.
[124] Belsky, A. J., Role of small browsing mammals in preventing woodland regeneration in the Serengeti National Park, Tanzania. African Journal of Ecology, 1984. 22 (4): 271-279.
[125] Barnes, M. E., Effects of large herbivores and fire on the regeneration of Acacia erioloba woodlands in Chobe National Park, Botswana. African Journal of Ecology, 2001. 39 (4): 340-350.
Cite This Article
  • APA Style

    Hamza Khalid Kija, Joseph Ochieng Ogutu, Lazaro Johana Mangewa, John Bukombe, Francesca Verones, et al. (2020). Land Use and Land Cover Change Within and Around the Greater Serengeti Ecosystem, Tanzania. American Journal of Remote Sensing, 8(1), 1-19. https://doi.org/10.11648/j.ajrs.20200801.11

    Copy | Download

    ACS Style

    Hamza Khalid Kija; Joseph Ochieng Ogutu; Lazaro Johana Mangewa; John Bukombe; Francesca Verones, et al. Land Use and Land Cover Change Within and Around the Greater Serengeti Ecosystem, Tanzania. Am. J. Remote Sens. 2020, 8(1), 1-19. doi: 10.11648/j.ajrs.20200801.11

    Copy | Download

    AMA Style

    Hamza Khalid Kija, Joseph Ochieng Ogutu, Lazaro Johana Mangewa, John Bukombe, Francesca Verones, et al. Land Use and Land Cover Change Within and Around the Greater Serengeti Ecosystem, Tanzania. Am J Remote Sens. 2020;8(1):1-19. doi: 10.11648/j.ajrs.20200801.11

    Copy | Download

  • @article{10.11648/j.ajrs.20200801.11,
      author = {Hamza Khalid Kija and Joseph Ochieng Ogutu and Lazaro Johana Mangewa and John Bukombe and Francesca Verones and Bente Jessen Graae and Jafari Ramadhani Kideghesho and Mohammed Yahya Said and Emmanuel Fred Nzunda},
      title = {Land Use and Land Cover Change Within and Around the Greater Serengeti Ecosystem, Tanzania},
      journal = {American Journal of Remote Sensing},
      volume = {8},
      number = {1},
      pages = {1-19},
      doi = {10.11648/j.ajrs.20200801.11},
      url = {https://doi.org/10.11648/j.ajrs.20200801.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajrs.20200801.11},
      abstract = {Land use and land cover (LULC) changes can pose profound impacts on wildlife habitats, abundance and distribution and on human-dominated landscapes. We investigated LULC changes in the Greater Serengeti ecosystem, Tanzania, for a period of 41 years from 1975 to 2015. Specifically, we mapped LULC types for 1975, 1995 and 2015 and assessed the corresponding changes during 1975-1995, 1995-2015 and 1975-2015. We used the random forest classification algorithm to classify Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (+ETM) and Operational Land Imager (OLI) into eight main classes. We obtained accuracies of 88.4%, 90.6% and 93.4% with Kappa Indices of Agreement (KIA) of 0.86, 0.87 and 0.91 for 1975, 1995 and 2015, respectively. Grassland, shrubland and woodland were the major LULC types throughout 1975-2015 with percentage coverages of 50.6%, 23.7% and 20.9% for 1975; 54.2%, 23.5% and 15.9% for 1995; and 57.0%, 23.8% and 8.9% for 2015, respectively. Overall, woodland cover (-11.1%) was converted to most of the other cover types during 1975-2015. The loss of woodland cover is due to increasing human population size, agriculture, settlements and policy changes fires and elephant browsing. Effective conservation policies and regulation of socio-economic activities in the ecosystem and its buffer area are essential to ameliorate declining vegetation cover, especially along the protected areas boundaries.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Land Use and Land Cover Change Within and Around the Greater Serengeti Ecosystem, Tanzania
    AU  - Hamza Khalid Kija
    AU  - Joseph Ochieng Ogutu
    AU  - Lazaro Johana Mangewa
    AU  - John Bukombe
    AU  - Francesca Verones
    AU  - Bente Jessen Graae
    AU  - Jafari Ramadhani Kideghesho
    AU  - Mohammed Yahya Said
    AU  - Emmanuel Fred Nzunda
    Y1  - 2020/04/29
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ajrs.20200801.11
    DO  - 10.11648/j.ajrs.20200801.11
    T2  - American Journal of Remote Sensing
    JF  - American Journal of Remote Sensing
    JO  - American Journal of Remote Sensing
    SP  - 1
    EP  - 19
    PB  - Science Publishing Group
    SN  - 2328-580X
    UR  - https://doi.org/10.11648/j.ajrs.20200801.11
    AB  - Land use and land cover (LULC) changes can pose profound impacts on wildlife habitats, abundance and distribution and on human-dominated landscapes. We investigated LULC changes in the Greater Serengeti ecosystem, Tanzania, for a period of 41 years from 1975 to 2015. Specifically, we mapped LULC types for 1975, 1995 and 2015 and assessed the corresponding changes during 1975-1995, 1995-2015 and 1975-2015. We used the random forest classification algorithm to classify Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (+ETM) and Operational Land Imager (OLI) into eight main classes. We obtained accuracies of 88.4%, 90.6% and 93.4% with Kappa Indices of Agreement (KIA) of 0.86, 0.87 and 0.91 for 1975, 1995 and 2015, respectively. Grassland, shrubland and woodland were the major LULC types throughout 1975-2015 with percentage coverages of 50.6%, 23.7% and 20.9% for 1975; 54.2%, 23.5% and 15.9% for 1995; and 57.0%, 23.8% and 8.9% for 2015, respectively. Overall, woodland cover (-11.1%) was converted to most of the other cover types during 1975-2015. The loss of woodland cover is due to increasing human population size, agriculture, settlements and policy changes fires and elephant browsing. Effective conservation policies and regulation of socio-economic activities in the ecosystem and its buffer area are essential to ameliorate declining vegetation cover, especially along the protected areas boundaries.
    VL  - 8
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Wildlife Management, College of Forestry, Wildlife and Tourism, Sokoine University of Agriculture, Morogoro, Tanzania; Conservation Information and Monitoring Unit (CIMU), Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania

  • Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany

  • Department of Wildlife Management, College of Forestry, Wildlife and Tourism, Sokoine University of Agriculture, Morogoro, Tanzania

  • Conservation Information and Monitoring Unit (CIMU), Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania

  • Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

  • Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway

  • College of African Wildlife Management (CAWM), Moshi, Tanzania

  • Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Institute for Climate Change and Adaptation, University of Nairobi, Nairobi, Kenya

  • Department of Forest Resources Assessment and Management, College of Forestry, Wildlife and Tourism, Sokoine University of Agriculture, Morogoro, Tanzania

  • Sections