AISI S1 Tool Steel after Deep Cryogenic Treatment: Tensile Properties and Microstructure
Advances in Materials
Volume 4, Issue 2-1, April 2015, Pages: 1-8
Received: Dec. 3, 2014; Accepted: Dec. 4, 2014; Published: Jan. 18, 2015
Views 3543      Downloads 140
Keyvan Seyedi Niaki, Department of Mechanical Engineering, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
Seyed Ebrahim Vahdat, Department of Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Article Tools
Follow on us
Successful employment of advanced tool steel in engineering applications is related to its ability in terms of meeting service life requirements and fabrication with proper dimensions. Deep cryogenic treatment may be used to produce advanced tool steel by simultaneously increasing toughness, strength, and hardness. Twelve sets of specimens were tested, 9 of which were deep cryogenic treated and then tempered. Tensile properties, hardness, X-ray diffraction, and scanning transmission electron microscopy were applied for macroscopic and microscopic investigations. The best results of simultaneous improvement in tensile toughness, hardness, and strength were obtained for 36 h soaking and 1 h tempering times.
Hardness, STEM, Strength, Tensile Toughness, XRD
To cite this article
Keyvan Seyedi Niaki, Seyed Ebrahim Vahdat, AISI S1 Tool Steel after Deep Cryogenic Treatment: Tensile Properties and Microstructure, Advances in Materials. Special Issue:Advanced Tool Steels. Vol. 4, No. 2-1, 2015, pp. 1-8. doi: 10.11648/
S. E. Vahdat and A. Pournaghi, "The Model for Monitoring of Pollutants Located in Different Regions," Management Science and Practice Vol. 1, pp. 8-13, 2013.
S. E. Vahdat and F. M. Nakhaee, Eds., Air Pollution Monitoring using Fuzzy Logic in Industries, (InTech, Croatia, 2011), pp. 21-30.
S. E. Vahdat and N. Towhidi, "Sustainable development of Iron and steel making in Environment in Iran by fuzzy logic," Journal of Environmental Studies Vol. 51, pp. 111-122, 2009.
Q. Wang, X. Ning, Q. Chen and B. Mao, Eds., Effect of Cryogenic Treatment on Retained Austenite and Fatigue Life of Gcr15 Wheel-Hub Bearing, (Springer Berlin Heidelberg, 2013), vol. 196, pp. 1701-1707.
S. Katoch, R. Sehgal and V. Singh, Eds., Effect of Cryogenic Treatment on Hardness, Microstructure and Wear Behavior of Hot Die Steel Grade AISI-H13, (Springer India, 2014), pp. 159-166.
S. Gill, J. Singh, R. Singh and H. Singh, "Effect of Cryogenic Treatment on AISI M2 High Speed Steel: Metallurgical and Mechanical Characterization," J. of Materi Eng and Perform Vol. 21, pp. 1320-1326, 2012.
S. Gill and H. Singh, Eds., Cryogenic Treatment of Materials: Cutting Tools and Polymers, (Springer Berlin Heidelberg, 2013), pp. 245-273.
S. Gill, J. Singh, R. Singh and H. Singh, "Metallurgical principles of cryogenically treated tool steels—a review on the current state of science," Int J Adv Manuf Technol Vol. 54, pp. 59-82, 2011.
S. Gill, H. Singh, R. Singh and J. Singh, "Cryoprocessing of cutting tool materials—a review," Int J Adv Manuf Technol Vol. 48, pp. 175-192, 2010.
C. W. Wegst, Key to Steel, (Verlag Stahlschlussel Wegst GMBH, Dusseldorf, 1989).
F. Farhani and K. S. Niaki, "A Programmable System for Treatment of Alloy Steels at Cryogenic Temperatures," Advanced Materials Research Vol. 264-265, pp. 1240-1245, 2011.
B.S., 10002–1, Metallic materials tensile testing, Part 1: method of test at ambient temperature, 2001
S. Thuillier and E. F. Rauch, "Development of microbands in mild steel during cross loading," Acta Metallurgica et Materialia Vol. 42, pp. 1973-1983, 1994.
A.S.T.M., E975, X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, 2013
G. E. Dieter, Ed., Mechanical Behavior under tensile and compressive loads, (ASM international, Ohio, 2000), vol. 8, pp. 5, 100-103.
A. Bensely, S. Venkatesh, D. Mohan Lal, G. Nagarajan, A. Rajadurai and K. Junik, "Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel," Materials Science and Engineering: A Vol. 479, pp. 229-235, 2008.
S. E. Vahdat, S. Nategh and S. Mirdamadi, "Microstructure and tensile properties of 45WCrV7 tool steel after deep cryogenic treatment," Materials Science and Engineering: A Vol. 585, pp. 444-454, 2013.
S. E. Vahdat, "Effect of Deep Cryogenic Processing on Tensile Toughness of 45WCrV7 Steel," International Journal of Steel Structures Vol. 14, pp. 1-8, 2014.
W. G. Vermeulen, P. F. Morris, A. P. d. Weijer and S. v. d. Zwaag, "Prediction of martensite start temperature using artificial neural networking," Ironmaking and Steelmaking Vol. 23, pp. 433-437, 1996.
Science Publishing Group
NEW YORK, NY 10018
Tel: (001)347-688-8931