Advances in Materials

| Peer-Reviewed |

Recent Advances in Carbon Nanotube-Polymer Composites

Received: 24 September 2017    Accepted: 24 October 2017    Published: 24 November 2017
Views:       Downloads:

Share This Article

Abstract

Carbon nanotubes demonstrate remarkable mechanical, thermal, and electrical properties, which allow a number of exciting potential applications. In this article, the most recent progress in research on the development of carbon nanotube-polymer composites is critically reviewed, with emphasis on recent advances in the principles and techniques for carbon nanotube functionalization. Various functionalization approaches and their role in the preparation of carbon nanotube-polymer composites with improved mechanical and electrical properties are discussed. The interaction between carbon nanotubes and polymers is also reviewed. Various techniques of carbon nanotube-polymer interaction measurements, including experimental and modelling studies, are described. Different methods of interaction improvement, mainly categorized under covalent and noncovalent interactions, are also described afterwards. An optimum carbon nanotube-polymer interaction is a crucial factor towards reaching the full potential of carbon nanotubes in nanocomposites. Potential topics of oncoming focus along with the potential applications of carbon nanotube-polymer composites are highlighted.

DOI 10.11648/j.am.20170606.14
Published in Advances in Materials (Volume 6, Issue 6, December 2017)
Page(s) 129-148
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Nanocomposites, Polymer Composites, Carbon Nanotubes, Physical Properties, Dispersion, Reinforcement, Functionalization, Interaction

References
[1] S. Iijima. Helical microtubules of graphitic carbon. Nature, Volume 354, Issue 6348, 1991, Pages 56-58.
[2] S. Iijima and T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, Volume 363, Issue 6430, 1993, Pages 603-605.
[3] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart. Carbon nanotubes: present and future commercial applications. Science, Volume 339, Issue 6119, 2013, Pages 535-539.
[4] D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato. Chemistry of carbon nanotubes. Chemical Reviews, Volume 106, Issue 3, 2006, Pages 1105-1136.
[5] R. Andrews and M. C. Weisenberger. Carbon nanotube polymer composites. Current Opinion in Solid State and Materials Science, Volume 8, Issue 1, 2004, Pages 31-37.
[6] Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, Volume 35, Issue 3, 2010, Pages 357-401.
[7] S. V. Ahir, Y. Y. Huang, E. M. Terentjev. Polymers with aligned carbon nanotubes: Active composite materials. Polymer, Volume 49, Issue 18, 2008, Pages 3841-3854.
[8] E. T. Thostenson, Z. Ren, and T.-W. Chou. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, Volume 61, Issue 13, 2001, Pages 1899-1912.
[9] X. Sun, H. Sun, H. Li, and H. Peng. Developing polymer composite materials: Carbon nanotubes or graphene? Advanced Materials, Volume 25, Issue 37, 2013, Pages 5153-5176.
[10] B. L. Wardle, D. S. Saito, E. J. Garcia, A. J. Hart, R. G. de Villoria, and E. A. Verploegen. Fabrication and characterization of ultrahigh-volume-fraction aligned carbon nanotube-polymer composites. Advanced Materials, Volume 20, Issue 14, 2008, Pages 2707-2714.
[11] J. Chen, R. Ramasubramaniam, C. Xue, and H. Liu. A versatile, molecular engineering approach to simultaneously enhanced, multifunctional carbon-nanotube-polymer composites. Advanced Functional Materials, Volume 16, Issue 1, 2006, Pages 114-119.
[12] C Wei, D. Srivastava, and K. Cho. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Letters, Volume 2, Issue 6, 2002, Pages 647-650.
[13] B. P. Grady. Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications, Hoboken: John Wiley & Sons, Inc., 2011.
[14] T. McNally and P. Pötschke. Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications, Cambridge: Woodhead Publishing, 2011.
[15] D. Tasis. Carbon Nanotube-Polymer Composites, London: Royal Society of Chemistry, 2013.
[16] P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio. Single-walled carbon nanotube-polymer composites: Strength and weakness. Advanced Materials, Volume 12, Issue 10, 2000, Pages 750-753.
[17] Y. Y. Huang and E. M. Terentjev. Tailoring the electrical properties of carbon nanotube-polymer composites. Advanced Functional Materials, Volume 20, Issue 23, 2010, Pages 4062-4068.
[18] D. Fragouli, A. Das, C. Innocenti, Y. Guttikonda, S. Rahman, L. Liu, V. Caramia, C. M. Megaridis, A. Athanassiou. Polymeric films with electric and magnetic anisotropy due to magnetically assembled functional nanofibers. ACS Applied Materials & Interfaces, Volume 6, Issue 6, 2014, Pages 4535-4541.
[19] M. T. Byrne and Y. K. Gun'ko. Recent advances in research on carbon nanotube-polymer composites. Advanced Materials, Volume 22, Issue 15, 2010, Pages 1672-1688.
[20] L. An, W. Xu, S. Rajagopalan, C. Wang, H. Wang, Y. Fan, L. Zhang, D. Jiang, J. Kapat, L. Chow, B. Guo, J. Liang, and R. Vaidyanathan. Carbon-nanotube-reinforced polymer-derived ceramic composites. Advanced Materials, Volume 16, Issue 22, 2004, Pages 2036-2040.
[21] W. Bauhofer and J. Z. Kovacs. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, Volume 69, Issue 10, 2009, Pages 1486-1498.
[22] I. Kang, Y. Y. Heung, J. H. Kim, J. W. Lee, R. Gollapudi, S. Subramaniam, S. Narasimhadevara, D. Hurd, G. R. Kirikera, V. Shanov, M. J. Schulz, D. Shi, J. Boerio, S. Mall, and M. Ruggles-Wren. Introduction to carbon nanotube and nanofiber smart materials. Composites Part B: Engineering, Volume 37, Issue 6, 2006, Pages 382-394.
[23] D. T. Colbert. Single-wall nanotubes: a new option for conductive plastics and engineering polymers. Plastics, Additives and Compounding, Volume 5, Issue 1, 2003, Pages 18-25.
[24] Y. Shi, G. Zeng, D. Xu, M. Liu, K. Wang, Z. Li, L. Fu, Q. Zhang, X. Zhang, and Y. Wei. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization. Materials Science and Engineering: C, Volume 80, 2017, Pages 404-410.
[25] J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, Volume 44, Issue 19, 2003, Pages 5893-5899.
[26] A. Moisala, Q. Li, I. A. Kinloch, and A. H. Windle. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Composites Science and Technology, Volume 66, Issue 10, 2006, Pages 1285-1288.
[27] G. Pal and S. Kumar. Modeling of carbon nanotubes and carbon nanotube-polymer composites. Progress in Aerospace Sciences, Volume 80, 2016, Pages 33-58.
[28] M. J. Biercuk, M. C. Llaguno, M. Radosvljevic, J. K. Hyun, and A. T. Johnson. Carbon nanotube composites for thermal management. Applied Physics Letters, Volume 80, Issue 15, 2002, Pages 2767-2769.
[29] K.-T. Lau, M. Chipara, H.-Y. Ling, and D. Hui. On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites Part B: Engineering, Volume 35, Issue 2, 2004, Pages 95-101.
[30] B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering: A, Volume 334, Issues 1-2, 2002, Pages 173-178.
[31] B. Safadi, R. Andrews, and E. A. Grulke. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. Journal of Applied Polymer Science, Volume 84, Issue 14, 2002, Pages 2660-2669.
[32] L. Bokobza. Multiwall carbon nanotube elastomeric composites: A review. Polymer, Volume 48, Issue 17, 2007, Pages 4907-4920.
[33] G. M. Odegard, T. S. Gates, K. E. Wise, C. Park, and E. J. Siochi. Constitutive modeling of nanotube-reinforced polymer composites. Composites Science and Technology, Volume 63, Issue 11, 2003, Pages 1671-1687.
[34] G. D. Seidel and D. C. Lagoudas. Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mechanics of Materials, Volume 38, Issues 8-10, 2006, Pages 884-907.
[35] J. Zhu, J. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Letters, Volume 3, Issue 8, 2003, Pages 1107-1113.
[36] P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, Volume 41, Issue 10, 2010, Pages 1345-1367.
[37] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Advanced Materials, Volume 15, Issue 14, 2003, Pages 1161-1165.
[38] J. N. Coleman, U. Khan, and Y. K. Gun'ko. Mechanical reinforcement of polymers using carbon nanotubes. Advanced Materials, Volume 18, Issue 6, 2006, Pages 689-706.
[39] L. Vaisman, H. D. Wagner, and G. Marom. The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, Volumes 128-130, 2006, Pages 37-46.
[40] A. B. Dalton, S. Collins, E. Muñoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman. Super-tough carbon-nanotube fibres. Nature, Volume 423, Issue 6941, 2003, Pages 703-706.
[41] D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, Volume 363, Issue 6430, 1993, Pages 605-607.
[42] V. N. Popov. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, Volume 43, Issue 3, 2004, Pages 61-102.
[43] J.-P. Tessonnier and D. S. Su. Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem, Volume 4, Issue 7, 2011, Pages 824-847.
[44] L. Dai, D. W. Chang, J.-B. Baek, and W. Lu. Carbon nanomaterials for advanced energy conversion and storage. Small, Volume 8, Issue 8, April 23, 2012, Pages 1130-1166.
[45] R. S. Ruoff and D. C. Lorents. Mechanical and thermal properties of carbon nanotubes. Carbon, Volume 33, Issue 7, 1995, Pages 925-930.
[46] M. S. Dresselhaus, G. Dresselhaus, and R. Saito. Physics of carbon nanotubes. Carbon, Volume 33, Issue 7, 1995, Pages 883-891.
[47] T. Filleter, R. Bernal, S. Li, and H. D. Espinosa. Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Advanced Materials, Volume 23, Issue 25, 2011, Pages 2855-2860.
[48] H. Dai. Carbon nanotubes:  Synthesis, integration, and properties. Accounts of Chemical Research, Volume 35, Issue 12, 2002, Pages 1035-1044.
[49] K. H. An, S. Y. Jeong, H. R. Hwang, and Y. H. Lee. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanocomposites. Advanced Materials, Volume 16, Issue 12, 2004, Pages 1005-1009.
[50] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, Volume 287, Issue 5459, 2000, Pages 1801-1804.
[51] T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi, M. Tang, and S.-Y. Wu. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, Volume 405, Issue 6788, 2000, Pages 769-772.
[52] J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon, Volume 44, Issue 9, 2006, Pages 1624-1652.
[53] K. Balasubramanian and M. Burghard. Chemically functionalized carbon nanotubes. Small, Volume 1, Issue 2, 2005, Pages 180-192.
[54] R. Saito and M. S. Dresselhaus. Optical properties of carbon nanotubes. In: K. Tanaka and S. Iijima (Eds.), Carbon Nanotubes and Graphene, Amsterdam: Elsevier, Inc., 2014, Pages 77-98.
[55] C. Liu and H.-M. Cheng. Carbon nanotubes: controlled growth and application. Materials Today, Volume 16, Issues 1-2, 2013, Pages 19-28.
[56] A. Hirsch. Functionalization of single-walled carbon nanotubes. Angewandte Chemie International Edition, Volume 41, Issue 11, 2002, Pages 1853-1859.
[57] M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, and F. Jellen. Sidewall functionalization of carbon nanotubes. Angewandte Chemie International Edition, Volume 40, Issue 21, 2001, Pages 4002-4005.
[58] A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L. S. Schadler. Surface modification of multiwalled carbon nanotubes:  Toward the tailoring of the interface in polymer composites. Chemistry of Materials, Volume 15, Issue 16, 2003, Pages 3198-3201.
[59] E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave. Fluorination of single-wall carbon nanotubes. Chemical Physics Letters, Volume 296, Issues 1-2, 1998, Pages 188-194.
[60] K. F. Kelly, I. W. Chiang, E. T. Mickelson, R. H. Hauge, J. L. Margrave, X. Wang, G. E. Scuseria, C. Radloff, and N. J. Halas. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chemical Physics Letters, Volume 313, Issues 3-4, 1999, Pages 445-450.
[61] H. Touhara, J. Inahara, T. Mizuno, Y. Yokoyama, S. Okanao, K. Yanagiuch, I. Mukopadhyay, S. Kawasaki, F. Okino, H. Shirai, W. H. Xu, T. Kyotani, and A. Tomita. Property control of new forms of carbon materials by fluorination. Journal of Fluorine Chemistry, Volume 114, Issue 2, 2002, Pages 181-188.
[62] J. L. Stevens, A. Y. Huang, H. Peng, I. W. Chiang, V. N. Khabashesku, and J. L. Margrave. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Letters, Volume 3, Issue 3, 2003, Pages 331-336.
[63] L.-X. Li and F. Li, The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New Carbon Materials, Volume 26, Issue 3, 2011, Pages 224-228.
[64] J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon. Solution properties of single-walled carbon nanotubes. Science, Volume 282, Issue 5386, 1998, Pages 95-98.
[65] H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, and R. C. Haddon. Sidewall Functionalization of Single-Walled Carbon Nanotubes by Addition of Dichlorocarbene. Journal of the American Chemical Society, Volume 125, Issue 48, 2003, Pages 14893-14900.
[66] M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, and A. Hirsch. Functionalization of single-walled carbon nanotubes with (r-)oxycarbonyl nitrenes. Journal of the American Chemical Society, Volume 125, Issue 28, 2003, Pages 8566-8580.
[67] E. Unger, A. Graham, F. Kreupl, M. Liebau, and W. Hoenlein. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Current Applied Physics, Volume 2, Issue 2, 2002, Pages 107-111.
[68] K. S. Kim, D. J. Bae, J. R. Kim, K. A. Park, S. C. Lim, J.-J. Kim, W. B. Choi, C. Y. Park, and Y. H. Lee. Modification of electronic structures of a carbon nanotube by hydrogen functionalization. Advanced Materials, Volume 14, Issue 24, 2002, Pages 1818-1821.
[69] C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, and D. Cazorla-Amorós. Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction. International Journal of Hydrogen Energy, Volume 40, Issue 34, 2015, Pages 11242-11253.
[70] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, and H. Honda. Chemical treatment of carbon nanotubes. Carbon, Volume 34, Issue 2, 1996, Pages 279-281.
[71] R. Yu, L. Chen, Q. Liu, J. Lin, K.-L. Tan, S. C. Ng, H. S. O. Chan, G.-Q. Xu, and T. S. A. Hor. Platinum deposition on carbon nanotubes via chemical modification. Chemistry of Materials, Volume 10, Issue 3, 1998, Pages 718-722.
[72] H. Hiura, T. W. Ebbesen, and K. Tanigaki. Opening and purification of carbon nanotubes in high yields. Advanced Materials, Volume 7, Issue 3, 1995, Pages 275-276.
[73] J. Luo, Y. Liu, H. Wei, B. Wang, K.-H. Wu, B. Zhang, and D. S. Su. A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chemistry, Volume 19, Issue 4, 2017, Pages 1052-1062.
[74] S. C. Wang, K. S. Chang, and C. J. Yuan. Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochimica Acta, Volume 54, Issue 21, 2009, Pages 4937-4943.
[75] C. A. Ávila-Orta, V. J. Cruz-Delgado, M. G. Neira-Velázquez, E. Hernández-Hernández, M. G. Méndez-Padilla, and F. J. Medellín-Rodríguez. Surface modification of carbon nanotubes with ethylene glycol plasma. Carbon, Volume 47, Issue 8, 2009, Pages 1916-1921.
[76] P. C. Ma, J.-K. Kim, and B. Z. Tang. Functionalization of carbon nanotubes using a silane coupling agent. Carbon, Volume 44, Issue 15, 2006, Pages 3232-3238.
[77] P. Liu. Modifications of carbon nanotubes with polymers. European Polymer Journal, Volume 41, Issue 11, 2005, Pages 2693-2703.
[78] M. A. Hamon, H. Hui, P. Bhowmik, H. M. E. Itkis, and R. C. Haddon. Ester-functionalized soluble single-walled carbon nanotubes. Applied Physics A, Volume 74, Issue 3, 2002, Pages 333-338.
[79] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley. Fullerene pipes. Science, Volume 280, Issue 5367, 1998, Pages 1253-1256.
[80] J. J. Stephenson, A. K. Sadana, A. L. Higginbotham, and J. M. Tour. Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: The Billups reaction. Chemistry of Materials, Volume 18, Issue 19, 2006, Pages 4658-4661.
[81] N. Karousis, N. Tagmatarchis, and D. Tasis. Current progress on the chemical modification of carbon nanotubes. Chemical Reviews, Volume 110, Issue 9, 2010, Pages 5366-5397.
[82] B. Mc Carthy, J. N. Coleman, R. Czerw, A. B. Dalton, D. L. Carroll, and W. J. Blau. Microscopy studies of nanotube-conjugated polymer interactions. Synthetic Metals, Volume 121, Issues 1-3, 2001, Pages 1225-1226.
[83] H. Li, F. Cheng, A. M. Duft, and A. Adronov. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. Journal of the American Chemical Society, Volume 127, Issue 41, 2005, Pages 14518-14524.
[84] S. Cui, R. Canet, A. Derre, M. Couzi, and P. Delhaes. Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon, Volume 41, Issue 4, 2003, Pages 797-809.
[85] L. Vaisman, G. Marom, and H. D. Wagner. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Advanced Functional Materials, Volume 16, Issue 3, 2006, Pages 357-363.
[86] M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science, Volume 297, Issue 5581, 2002, Pages 593-596.
[87] M. Bystrzejewski, A. Huczko, H. Lange, T. Gemming, B. Büchner, and M. H. Rümmeli. Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. Journal of Colloid and Interface Science, Volume 345, Issue 2, 2010, Pages 138-142.
[88] T.-H. Kim, C. Doe, S. R. Kline, and S.-M. Choi. Water-redispersible isolated single-walled carbon nanotubes fabricated by in situ polymerization of micelles. Advanced Materials, Volume 19, Issue 7, 2007, Pages 929-933.
[89] E. A. Whitsitt and A. R. Barron. Silica coated single walled carbon nanotubes. Nano Letters, Volume 3, Issue 6, 2003, Pages 775-778.
[90] M. D. Clark, S. Subramanian, and R. Krishnamoorti. Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. Journal of Colloid and Interface Science, Volume 354, Issue 1, 2011, Pages 144-151.
[91] N. Grossiord, J. Loos, O. Regev, and C. E. Koning. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chemistry of Materials, Volume 18, Issue 5, 2006, Pages 1089-1099.
[92] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldi, and M. Prato. Decorating carbon nanotubes with metal or semiconductor nanoparticles. Journal of Materials Chemistry, Volume 17, Issue 26, 2007, Pages 2679-2694.
[93] S. C. Tsang, Z. Guo, Y. K. Chen, M. L. H. Green, H. A. O. Hill, T. W. Hambley, and P. J. Sadler. Immobilization of platinated and iodinated oligonucleotides on carbon nanotubes. Angewandte Chemie International Edition, Volume 36, Issue 20, November 3, 1997, Pages 2198-2200.
[94] W. M. Pachekoski, S. C. Amico, S. H. Pezzin, and J. R. M. d’Almeida. Carbon nanotube hybrid polymer composites: Recent advances in mechanical characterization. In: V. K. Thakur, M. K. Thakur, and A. Pappu (Eds.), Hybrid Polymer Composite Materials: Properties and Characterisation, Duxford: Woodhead Publishing, 2017, Pages 133-150.
[95] M. Wong, M. Paramsothy, X. J. Xu, Y. Ren, S. Li, and K. Liao. Physical interactions at carbon nanotube-polymer interface. Polymer, Volume 44, Issue 25, 2003, Pages 7757-7764.
[96] N. G. Sahoo, S. Rana, J. W. Cho, L. Li, and S. H. Chan. Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, Volume 35, Issue 7, 2010, Pages 837-867.
[97] T. Yamamoto and K. Kawaguchi. Synthesis of composite polymer particles with carbon nanotubes and evaluation of their mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 529, 2017, Pages 765-770.
[98] A. V. Desai and M. A. Haque. Mechanics of the interface for carbon nanotube-polymer composites. Thin-Walled Structures, Volume 43, Issue 11, 2005, Pages 1787-1803.
[99] I. Szleifer and R. Yerushalmi-Rozen. Polymers and carbon nanotubes-dimensionality, interactions and nanotechnology. Polymer, Volume 46, Issue 19, 2005, Pages 7803-7818.
[100] M. Rahmat and P. Hubert. Carbon nanotube-polymer interactions in nanocomposites: A review. Composites Science and Technology, Volume 72, Issue 1, 2011, Pages 72-84.
[101] J. B. Bai. Evidence of the reinforcement role of chemical vapour deposition multi-walled carbon nanotubes in a polymer matrix. Carbon, Volume 41, Issue 6, 2003, Pages 1325-1328.
[102] C.-W. Nan, Z. Shi, and Y. Lin. A simple model for thermal conductivity of carbon nanotube-based composites. Chemical Physics Letters, Volume 375, Issues 5-6, 2003, Pages 666-669.
[103] A. K.-T. Lau, and D. Hui. The revolutionary creation of new advanced materials-carbon nanotube composites. Composites Part B: Engineering, Volume 33, Issue 4, 2002, Pages 263-277.
[104] A. H. Barber, S. R. Cohen, and H. D. Wagner. Measurement of carbon nanotube-polymer interfacial strength. Applied Physics Letters, Volume 82, Issue 23, 2003, Pages 4140-4142.
[105] J.-B. Donnet, T. K. Wang, J. C. M. Peng, and S. Rebouillat. Carbon Fibers, 3rd ed. (revised and expanded edition), New York: Marcel Dekker Inc., 1998.
[106] W. Ding, A. Eitan, F. T. Fisher, X. Chen, D. A. Dikin, R. Andrews, L. C. Brinson, L. S. Schadler, and R. S. Ruoff. Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Letters, Volume 3, Issue 11, 2003, Pages 1593-1597.
[107] T. Zhou, X. Wang, X. Liu, and D. Xiong. Influence of multi-walled carbon nanotubes on the cure behavior of epoxy-imidazole system. Carbon, Volume 47, Issue 4, 2009, Pages 1112-1118.
[108] S. J. V. Frankland and V. M. Harik. Analysis of carbon nanotube pull-out from a polymer matrix. Surface Science, Volume 525, Issues 1-3, 2003, Pages L103-L108.
[109] J. Gou, B. Minaie, B. Wang, Z. Liang, and C. Zhang. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Computational Materials Science, Volume 31, Issues 3-4, 2004, Pages 225-236.
[110] L. Dai and A. W. H. Mau. Surface and interface control of polymeric biomaterials, conjugated polymers, and carbon nanotubes. The Journal of Physical Chemistry B, Volume 104, Issue 9, 2000, Pages 1891-1915.
[111] H. Karami, M. G. Asadi, and M. Mansoori. Pulse electropolymerization and the characterization of polyaniline nanofibers. Electrochimica Acta, Volume 61, 2012, Pages 154-164.
[112] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes. Light-emitting diodes based on conjugated polymers. Nature, Volume 347, Issue 6293, 1990, Pages 539-541.
[113] J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, W. J. Blau. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Advanced Materials, Volume 12, Issue 3, 2000, Pages 213-216.
[114] H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith Jr., L. Echegoyen, D. L. Carroll, S. H. Foulger, and J. Ballato. Carbon nanotube doped polyaniline. Advanced Materials, Volume 14, Issue 20, 2002, Pages 1480-1483.
[115] A. B. Dalton, W. J. Blau, G. Chambers, J. N. Coleman, K. Henderson, S. Lefrant, B. McCarthy, C. Stephan, and H. J. Byrne. A functional conjugated polymer to process, purify and selectively interact with single wall carbon nanotubes. Synthetic Metals, Volume 121, Issues 1-3, 2001, Pages 1217-1218.
[116] A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S.-W. Chung, H. Choi, and J. R. Heath. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angewandte Chemie International Edition, Volume 40, Issue 9, 2001, Pages 1721-1725.
[117] D. W. Steuerman, A. Star, R. Narizzano, H. Choi, R. S. Ries, C. Nicolini, J. F. Stoddart, and J. R. Heath. Interactions between conjugated polymers and single-walled carbon nanotubes. The Journal of Physical Chemistry B, Volume 106, Issue 12, 2002, Pages 3124-3130.
[118] J. H. Rouse. Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon nanotube sol-gel composite formation. Langmuir, Volume 21, Issue 3, 2005, Pages 1055-1061.
[119] J. Wang, J. Dai, and T. Yarlagadda. Carbon nanotube-conducting-polymer composite nanowires. Langmuir, Volume 21, Issue 1, 2005, Pages 9-12.
[120] Z. Guo, P. J. Sadler, and S. C. Tsang. Immobilization and visualization of DNA and proteins on carbon nanotubes. Advanced Materials, Volume 10, Issue 9, 1998, Pages 701-703.
[121] S. G. Chou, H. B. Ribeiro, E. B. Barros, A. P. Santos, D. Nezich, Ge. G. Samsonidze, C. Fantini, M. A. Pimenta, A. Jorio, F. Plentz Filho, M. S. Dresselhaus, G. Dresselhaus, R. Saito, M. Zheng, G. B. Onoa, E. D. Semke, A. K. Swan, M. S. Ünlü, and B. B. Goldberg. Optical characterization of DNA-wrapped carbon nanotube hybrids. Chemical Physics Letters, Volume 397, Issues 4-6, 2004, Pages 296-301.
[122] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi. DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials, Volume 2, Issue 5, 2003, Pages 338-342.
[123] M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science, Volume 302, Issue 5650, 2003, Pages 1545-1548.
[124] O. P. Matyshevska, A. Yu. Karlash, Y. V. Shtogun, A. Benilov, Yu. Kirgizov, K. O. Gorchinskyy, E. V. Buzaneva, Y. I. Prylutskyy, and P. Scharff. Self-organizing DNA-carbon nanotube molecular films. Materials Science and Engineering: C, Volume 15, Issues 1-2, 2001, Pages 249-252.
[125] B. F. Erlanger, B.-X. Chen, M. Zhu, and L. Brus. Binding of an anti-fullerene IgG monoclonal antibody to single wall carbon nanotubes. Nano Letters, Volume 1, Issue 9, 2001, Pages 465-467.
[126] J. N. Barisci, M. Tahhan, G. G. Wallace, S. Badaire, T. Vaugien, M. Maugey, and P. Poulin. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Advanced Functional Materials, Volume 14, Issue 2, 2004, Pages 133-138.
[127] K. Keren, S. R. Berman, E. Buchstab, U. Sivan, and E. Braun. DNA-templated carbon nanotube field-effect transistor. Science, Volume 302, Issue 5649, 2003, Pages 1380-1382.
[128] H. Gao and Y. Kong. Simulation of DNA-nanotube interactions. Annual Review of Materials Research, Volume 34, 2004, Pages 123-150.
[129] G. R. Dieckmann, A. B. Dalton, P. A. Johnson, J. Razal, J. Chen, G. M. Giordano, E. Muñoz, I. H. Musselman, R. H. Baughman, and R. K. Draper. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. Journal of the American Chemical Society, Volume 125, Issue 7, 2003, Pages 1770-1777.
[130] M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, Volume 342, Issues 3-4, 2001, Pages 265-271.
[131] A. Star, D. W. Steuerman, J. R. Heath, and J. F. Stoddart. Starched carbon nanotubes. Angewandte Chemie International Edition, Volume 41, Issue 14, 2002, Pages 2508-2512.
[132] H. D. Wagner and R. A. Vaia. Nanocomposites: issues at the interface. Materials Today, Volume 7, Issue 11, 2004, Pages 38-42.
[133] S. Gotovac, H. Honda, Y. Hattori, K. Takahashi, H. Kanoh, and K. Kaneko. Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Letters, Volume 7, Issue 3, 2007, Pages 583-587.
[134] J. Moreno, S. Aspera, M. David, and H. Kasai. A computational study on the effect of local curvature on the adsorption of oxygen on single-walled carbon nanotubes. Carbon, Volume 94, 2015, Pages 936-941.
[135] M. M. Zaeri, S. Ziaei-Rad, A. Vahedi, and F. Karimzadeh. Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon, Volume 48, Issue 13, 2010, Pages 3916-3930.
[136] M.-F. Yu, B. I. Yakobson, and R. S. Ruoff. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. The Journal of Physical Chemistry B, Volume 104, Issue 37, 2000, Pages 8764-8767.
[137] D. Qian, W. K. Liu, and R. S. Ruoff. Load transfer mechanism in carbon nanotube ropes. Composites Science and Technology, Volume 63, Issue 11, 2003, Pages 1561-1569.
[138] D. Qian, E. C. Dickey, R. Andrews, and T. Rantell. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, Volume 76, Issue 20, 2000, Pages 2868-2870.
[139] L.-G. Tang and J. L. Kardos. A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polymer Composites, Volume 18, Issue 1, 1997, Pages 100-113.
[140] M. Mu and K. I. Winey. Improved load transfer in nanotube-polymer composites with increased polymer molecular weight. The Journal of Physical Chemistry C, Volume 111, Issue 48, 2007, Pages 17923-17927.
[141] M. Cadek, J. N. Coleman, K. P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J. B. Nagy, K. Szostak, F. Béguin, and W. J. Blau. Reinforcement of polymers with carbon nanotubes:  The role of nanotube surface area. Nano Letters, Volume 4, Issue 2, 2004, Pages 353-356.
[142] J. Gao, M. A. Loi, E. J. F. de Carvalho, and M. C. dos Santos. Selective wrapping and supramolecular structures of polyfluorene-carbon nanotube hybrids. ACS Nano, Volume 5, Issue 5, 2011, Pages 3993-3999.
[143] W. Yi, A. Malkovskiy, Y. Xu, X.-Q. Wang, A. P. Sokolov, M. Lebron-Colon, M. A. Meador, and Y. Pang. Polymer conformation-assisted wrapping of single-walled carbon nanotube: The impact of cis-vinylene linkage. Polymer, Volume 51, Issue 2, 2010, Pages 475-481.
[144] S. S. Tallury and M. A. Pasquinelli. Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. The Journal of Physical Chemistry B, Volume 114, Issue 29, 2010, Pages 9349-9355.
[145] I. Kusner and S. Srebnik. Conformational behavior of semi-flexible polymers confined to a cylindrical surface. Chemical Physics Letters, Volume 430, Issues 1-3, 2006, Pages 84-88.
[146] S. S. Tallury and M. A. Pasquinelli. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. The Journal of Physical Chemistry B, Volume 114, Issue 12, 2010, Pages 4122-4129.
[147] H. Wang, J. Mei, P. Liu, K. Schmidt, G. Jiménez-Osés, S. Osuna, L. Fang, C. J. Tassone, A. P. Zoombelt, A. N. Sokolov, K. N. Houk, M. F. Toney, and Z. Bao. Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene-thiophene copolymers for thin film transistors. ACS Nano, Volume 7, Issue 3, 2013, Pages 2659-2668.
[148] S. Zhang, W. Lin, C.-P. Wong, D. G. Bucknall, and S. Kumar. Nanocomposites of carbon nanotube fibers prepared by polymer crystallization. ACS Applied Materials & Interfaces, Volume 2, Issue 6, 2010, Pages 1642-1647.
[149] V. V. Didenko, V. C. Moore, D. S. Baskin, and R. E. Smalley. Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping. Nano Letters, Volume 5, Issue 8, 2005, Pages 1563-1567.
[150] W. S. Choi, and S. H. Ryu. Improvement of interfacial interaction via ATRP in polycarbonate-carbon nanotube nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 375, Issues 1-3, 2011, Pages 55-60.
[151] F. Buffa, G. A. Abraham, B. P. Grady, and D. Resasco. Effect of nanotube functionalization on the properties of single-walled carbon nanotube-polyurethane composites. Journal of Polymer Science Part B: Polymer Physics, Volume 45, Issue 4, 2007, Pages 490-501.
[152] Q. Zheng, Q. Xue, K. Yan, X. Gao, Q. Li, and L. Hao. Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites. Polymer, Volume 49, Issue 3, 2008, Pages 800-808.
[153] T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, Volume 3, Issue 6, 2008, Pages 327-331.
[154] J.-M. Yuan, Z.-F. Fan, X.-H. Chen, X.-H. Chen, Z.-J. Wu, and L.-P. He. Preparation of polystyrene-multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer, Volume 50, Issue 14, 2009, Pages 3285-3291.
[155] C. Velasco-Santos, A. L. Martínez-Hernández, F. T. Fisher, R. Ruoff, and V. M. Castaño. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chemistry of Materials, Volume 15, Issue 23, 2003, Pages 4470-4475.
[156] N. G. Sahoo, H. K. F. Cheng, J. Cai, L. Li, S. H. Chan, J. Zhao, and S. Yu. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Materials Chemistry and Physics, Volume 117, Issue 1, 2009, Pages 313-320.
[157] C.-M. Chang and Y.-L. Liu. Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer-carbon nanotube composites. Carbon, Volume 48, Issue 4, 2010, Pages 1289-1297.
[158] S. Mallakpour and A. Zadehnazari. A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Progress in Organic Coatings, Volume 77, Issue 3, 2014, Pages 679-684.
[159] R. E. Gorga, K. K. S. Lau, K. K. Gleason, and R. E. Cohen. The importance of interfacial design at the carbon nanotube-polymer composite interface. Journal of Applied Polymer Science, Volume 102, Issue 2, 2006, Pages 1413-1418.
[160] N. Lachman and H. D. Wagner. Correlation between interfacial molecular structure and mechanics in CNT-epoxy nano-composites. Composites Part A: Applied Science and Manufacturing, Volume 41, Issue 9, 2010, Pages 1093-1098.
[161] S. Wang, Z. Liang, P. Gonnet, Y.-H. Liao, B. Wang, and C. Zhang. Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Advanced Functional Materials, Volume 17, Issue 1, 2007, Pages 87-92.
[162] J. Q. Liu, T. Xiao, K. Liao, and P. Wu. Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations. Nanotechnology, Volume 18, Issue 16, 2007, Pages 165701-165706.
[163] J. Hone, M. Whitney, and A. Zettl. Thermal conductivity of single-walled carbon nanotubes. Synthetic Metals, Volume 103, Issues 1-3, 1999, Pages 2498-2499.
[164] R. N. Salaway and L. V. Zhigilei. Molecular dynamics simulations of thermal conductivity of carbon nanotubes: Resolving the effects of computational parameters. International Journal of Heat and Mass Transfer, Volume 70, 2014, Pages 954-964.
[165] K. Chu, Q. Wu, C. Jia, X. Liang, J. Nie, W. Tian, G. Gai, and H. Guo. Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Composites Science and Technology, Volume 70, Issue 2, 2010, Pages 298-304.
[166] S. Zhao, Z. Zheng, Z. Huang, S. Dong, P. Luo, Z. Zhang, and Y. Wang. Cu matrix composites reinforced with aligned carbon nanotubes: Mechanical, electrical and thermal properties. Materials Science and Engineering: A, Volume 675, 2016, Pages 82-91.
[167] Y.-P. Sun, K. Fu, Y. Lin, and W. Huang. Functionalized carbon nanotubes:  Properties and applications. Accounts of Chemical Research, Volume 35, Issue 12, 2002, Pages 1096-1104.
[168] J.-P. Issi, L. Langer, J. Heremans, and C. H. Olk. Electronic properties of carbon nanotubes: Experimental results. Carbon, Volume 33, Issue 7, 1995, Pages 941-948.
[169] J. W. Mintmire and C. T. White. Electronic and structural properties of carbon nanotubes. Carbon, Volume 33, Issue 7, 1995, Pages 893-902.
[170] L.-M. Peng, Z. Zhang, and S. Wang. Carbon nanotube electronics: recent advances. Materials Today, Volume 17, Issue 9, 2014, Pages 433-442.
[171] T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, R. H. Hauge, and R. E. Smalley. Polyacrylonitrile single-walled carbon nanotube composite fibers. Advanced Materials, Volume 16, Issue 1, 2004, Pages 58-61.
[172] E. Karpushkin, N. Gvozdik, M. Klimenko, S. K. Filippov, B. Angelov, I. Bessonov, and V. Sergeyev. Structure and flow behavior of dilute dispersions of carbon nanotubes in polyacrylonitrile-dimethylsulfoxide solution. Colloid and Polymer Science, Volume 294, Issue 7, 2016, Pages 1187-1195.
[173] H. G. Chae, T. V. Sreekumar, T. Uchida, and S. Kumar. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer, Volume 46, Issue 24, 2005, Pages 10925-10935.
[174] Z. Han and A. Fina. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, Volume 36, Issue 7, 2011, Pages 914-944.
[175] H. S. Kim, J.-U. Jang, J. Yu, and S. Y. Kim. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Composites Part B: Engineering, Volume 79, 2015, Pages 505-512.
[176] F. Gong, K. Bui, D. V. Papavassiliou, and H. M. Duong. Thermal transport phenomena and limitations in heterogeneous polymer composites containing carbon nanotubes and inorganic nanoparticles. Carbon, Volume 78, 2014, Pages 305-316.
[177] J. Bouchard, A. Cayla, E. Devaux, and C. Campagne. Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Composites Science and Technology, Volume 86, 2013, Pages 177-184.
[178] W. Fang, H. W. Jang, and S. N. Leung. Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks. Composites Part B: Engineering, Volume 83, 2015, Pages 184-193.
[179] H. S. Kim, J. H. Kim, C.-M. Yang, and S. Y. Kim. Synergistic enhancement of thermal conductivity in composites filled with expanded graphite and multi-walled carbon nanotube fillers via melt-compounding based on polymerizable low-viscosity oligomer matrix. Journal of Alloys and Compounds, Volume 690, 2017, Pages 274-280.
[180] J. Huang, M. Gao, T. Pan, Y. Zhang, and Y. Lin. Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Composites Science and Technology, Volume 95, 2014, Pages 16-20.
[181] P. S. Goh, A. F. Ismail, and B. C. Ng. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Composites Part A: Applied Science and Manufacturing, Volume 56, 2014, Pages 103-126.
[182] K. Wu, Y. Li, R. Huang, S. Chai, F. Chen, and Q. Fu. Constructing conductive multi-walled carbon nanotubes network inside hexagonal boron nitride network in polymer composites for significantly improved dielectric property and thermal conductivity. Composites Science and Technology, Volume 151, 2017, Pages 193-201.
[183] F. Nilsson, J. Krückel, D. W. Schubert, F. Chen, M. Unge, U. W. Gedde, and M. S. Hedenqvist. Simulating the effective electric conductivity of polymer composites with high aspect ratio fillers. Composites Science and Technology, Volume 132, 2016, Pages 16-23.
[184] T. Ji, Y. Feng, M. Qin, and W. Feng. Thermal conducting properties of aligned carbon nanotubes and their polymer composites. Composites Part A: Applied Science and Manufacturing, Volume 91, Part 1, 2016, Pages 351-369.
[185] V. D. Punetha, S. Rana, H. J. Yoo, A. Chaurasia, J. T. McLeskey, M. S. Ramasamy, N. G. Sahoo, and J. W. Cho. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science, Volume 67, 2017, Pages 1-47.
[186] M. Safdari and M. S. Al-Haik. Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Carbon, Volume 64, 2013, Pages 111-121.
[187] G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, Volume 21, 2015, Pages 11-25.
[188] C. Bartholome, P. Miaudet, A. Derré, M. Maugey, O. Roubeau, C. Zakri, and P. Poulin. Influence of surface functionalization on the thermal and electrical properties of nanotube-PVA composites. Composites Science and Technology, Volume 68, Issue 12, 2008, Pages 2568-2573.
[189] L. Guadagno, B. De Vivo, A. Di Bartolomeo, P. Lamberti, A. Sorrentino, V. Tucci, L. Vertuccio, and V. Vittoria. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube-epoxy composites. Carbon, Volume 49, Issue 6, 2011, Pages 1919-1930.
[190] K. T. Kim and W. H. Jo. Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for high performance Nylon 66-multi-walled carbon nanotube composites. Carbon, Volume 49, Issue 3, 2011, Pages 819-826.
[191] G. Pal and S. Kumar. Modeling of carbon nanotubes and carbon nanotube-polymer composites. Progress in Aerospace Sciences, Volume 80, 2016, Pages 33-58.
[192] A. El Moumen, M. Tarfaoui, and K. Lafdi. Mechanical characterization of carbon nanotubes based polymer composites using indentation tests. Composites Part B: Engineering, Volume 114, 2017, Pages 1-7.
[193] N. Terasawa and K. Asaka. Electrochemical and Electromechanical Properties of Activated Multi-walled Carbon Nanotube Polymer Actuator that Surpass the Performance of a Single-walled Carbon Nanotube Polymer Actuator. Materials Today: Proceedings, Volume 3, Supplement 2, 2016, Pages S178-S183.
[194] M. Castellino, M. Rovere, M. I. Shahzad, and A. Tagliaferro. Conductivity in carbon nanotube polymer composites: A comparison between model and experiment. Composites Part A: Applied Science and Manufacturing, Volume 87, 2016, Pages 237-242.
[195] J. B. In, H.-J. Kwon, J.-H. Yoo, F. I. Allen, A. M. Minor, and C. P. Grigoropoulos. Laser welding of vertically aligned carbon nanotube arrays on polymer workpieces. Carbon, Volume 115, 2017, Pages 688-693.
[196] E. M. Jackson, P. E. Laibinis, W. E. Collins, A. Ueda, C. D. Wingard, and B. Penn. Development and thermal properties of carbon nanotube-polymer composites. Composites Part B: Engineering, Volume 89, 2016, Pages 362-373.
[197] Y. Cai, L. Chen, H. Yang, J. Gou, L. Cheng, X. Yin, and H. Yin. Mechanical and electrical properties of carbon nanotube buckypaper reinforced silicon carbide nanocomposites. Ceramics International, Volume 42, Issue 4, 2016, Pages 4984-4992.
[198] J. M. Sieben, A. Ansón-Casaos, F. Montilla, M. T. Martínez, and E. Morallón. Electrochemical behaviour of different redox probes on single wall carbon nanotube buckypaper-modified electrodes. Electrochimica Acta, Volume 135, 2014, Pages 404-411.
[199] Md. H.-O. Rashid, S. Q. T. Pham, L. J. Sweetman, L. J. Alcock, A. Wise, L. D. Nghiem, G. Triani. Marc in het Panhuis, Stephen F. Ralph, Synthesis, properties, water and solute permeability of MWNT buckypapers. Journal of Membrane Science, Volume 456, 2014, Pages 175-184.
[200] Md. H.-O. Rashid, G. Triani, N. Scales, M. in het Panhuis, L. D. Nghiem, and S. F. Ralph. Nanofiltration applications of tough MWNT buckypaper membranes containing biopolymers. Journal of Membrane Science, Volume 529, 2017, Pages 23-34.
[201] H. Chen, L. Zhang, J. Chen, M. Becton, X. Wang, and H. Nie. Energy dissipation capability and impact response of carbon nanotube buckypaper: A coarse-grained molecular dynamics study. Carbon, Volume 103, 2016, Pages 242-254.
[202] M. F. Arif, S. Kumar, and T. Shah. Tunable morphology and its influence on electrical, thermal and mechanical properties of carbon nanostructure-buckypaper. Materials & Design, Volume 101, 2016, Pages 236-244.
[203] L. S. Schadler, S. C. Giannaris, and P. M. Ajayan. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters, Volume 73, Issue 26, 1998, Pages 3842-3844.
[204] M. Mu, S. Osswald, Y. Gogotsi, and K. I. Winey. An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer. Nanotechnology, Volume 20, Issue 33, 2009, Pages 1-7.
[205] H. R. Lusti and A. A. Gusev. Finite element predictions for the thermoelastic properties of nanotube reinforced polymers. Modelling and Simulation in Materials Science and Engineering, Volume 12, Issue 3, 2004, Pages S107-S119.
[206] A. S. dos Santos, T. de O. N. Leite, C. A. Furtado, C. Welter, L. C. Pardini, and G. G. Silva. Morphology, thermal expansion, and electrical conductivity of multiwalled carbon nanotube-epoxy composites. Journal of Applied Polymer Science, Volume 108, Issue 2, 2008, Pages 979-986.
[207] S. J. V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates. The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Composites Science and Technology, Volume 63, Issue 11, 2003, Pages 1655-1661.
[208] T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, Volume 21, Issue 5, 1973, Pages 571-574.
[209] G. M. Odegard and T. S. Gates. Modeling and testing of the viscoelastic properties of a graphite nanoplatelet-epoxy composite. Journal of Intelligent Material Systems and Structures, Volume 17, Issue 3, 2006, Pages 239-246.
[210] K. M. Liew, Z. X. Lei, J. L. Yu, and L. W. Zhang. Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Computer Methods in Applied Mechanics and Engineering, Volume 268, 2014, Pages 1-17.
[211] J. C. Halpin. Stiffness and expansion estimates for oriented short fiber composites. Journal of Composite Materials, Volume 3, Issue 4, 1969, Pages 732-734.
[212] C. L. Tucker III and E. Liang. Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Composites Science and Technology, Volume 59, Issue 5, 1999, Pages 655-671.
[213] G. M. Odegard, R. B. Pipes, and P. Hubert. Comparison of two models of SWCN polymer composites. Composites Science and Technology, Volume 64, Issues 7-8, 2004, Pages 1011-1020.
[214] R. B. Pipes, S. J. V. Frankland, P. Hubert, and E. Saether. Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements. Composites Science and Technology, Volume 63, Issue 10, 2003, Pages 1349-1358.
[215] R. B. Pipes and P. Hubert. Scale effects in carbon nanostrutures:  Self-similar analysis. Nano Letters, Volume 3, Issue 2, 2003, Pages 239-243.
[216] T. S. Gates, G. M. Odegard, S. J. V. Frankland, and T. C. Clancy. Computational materials: Multi-scale modeling and simulation of nanostructured materials. Composites Science and Technology, Volume 65, Issues 15-16, 2005, Pages 2416-2434.
[217] X.-M. Sui, S. Giordani, M. Prato, and H. D. Wagner. Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers. Applied Physics Letters, Volume 95, Issue 23, 2009, Pages 1-3.
[218] V. Mirjalili, R. Ramachandramoorthy, and P. Hubert. Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes. Carbon, Volume 79, 2014, Pages 413-423.
[219] Z. Fan and S. G. Advani. Characterization of orientation state of carbon nanotubes in shear flow. Polymer, Volume 46, Issue 14, 2005, Pages 5232-5240.
[220] F. H. Gojny, M. H. G. Wichmann, U. Köpke, B. Fiedler, and K. Schulte. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, Volume 64, Issue 15, 2004, Pages 2363-2371.
[221] M. H. Al-Saleh and U. Sundararaj. Electromagnetic interference shielding mechanisms of CNT-polymer composites. Carbon, Volume 47, Issue 7, 2009, Pages 1738-1746.
[222] C.-S. Zhang, Q.-Q. Ni, S.-Y. Fu, and K. Kurashiki. Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Composites Science and Technology, Volume 67, Issue 14, 2007, Pages 2973-2980.
[223] S. Kwon, R. Ma, U. Kim, H. R. Choi, and S. Baik, Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon, Volume 68, 2014, Pages 118-124.
[224] K. Hayashida and Y. Matsuoka. Electromagnetic interference shielding properties of polymer-grafted carbon nanotube composites with high electrical resistance. Carbon, Volume 85, 2015, Pages 363-371.
[225] L. Valentini, S. B. Bon, and J. M. Kenny. Electrodeposited carbon nanotubes as template for the preparation of semi-transparent conductive thin films by in situ polymerization of methyl methacrylate. Carbon, Volume 45, Issue 13, 2007, Pages 2685-2691.
[226] P. V. Kamat, K. G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field. Journal of the American Chemical Society, Volume 126, Issue 34, 2004, Pages 10757-10762.
[227] S. L. Hellstrom, H. W. Lee, and Z. Bao. Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. ACS Nano, Volume 3, Issue 6, 2009, Pages 1423-1430.
[228] J. Ben-David, A. J. Stapleton, C. T. Gibson, A. Sharma, A. R. Gentle, D. A. Lewis, and A. V. Ellis. Poly (3,4-ethylenedioxythiophene): polystyrene sulfonate-free silver nanowire-single walled carbon nanotube transparent electrodes using graphene oxide. Thin Solid Films, Volume 616, 2016, Pages 515-520.
[229] A. B. Morgan and C. A. Wilkie. Flame Retardant Polymer Nanocomposites, Hoboken: John Wiley & Sons, Inc., 2007.
[230] S. Ullah, F. Ahmad, A. M. Shariff, M. R. Raza, and P. J. Masset. The role of multi-wall carbon nanotubes in char strength of epoxy based intumescent fire retardant coating. Journal of Analytical and Applied Pyrolysis, Volume 124, 2017, Pages 149-160.
[231] S. Wang, F. Xin, Y. Chen, L. Qian, and Y. Chen. Phosphorus-nitrogen containing polymer wrapped carbon nanotubes and their flame-retardant effect on epoxy resin. Polymer Degradation and Stability, Volume 129, 2016, Pages 133-141.
[232] G. Huang, S. Wang, P. Song, C. Wu, S. Chen, and X. Wang. Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Composites Part A: Applied Science and Manufacturing, Volume 59, 2014, Pages 18-25.
[233] N. A. Isitman and C. Kaynak. Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate). Polymer Degradation and Stability, Volume 95, Issue 9, 2010, Pages 1523-1532.
[234] T. Orhan, N. A. Isitman, J. Hacaloglu, and C. Kaynak. Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes. Polymer Degradation and Stability, Volume 97, Issue 3, 2012, Pages 273-280.
[235] T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, and J. Douglas. Thermal and flammability properties of polypropylene-carbon nanotube nanocomposites. Polymer, Volume 45, Issue 12, 2004, Pages 4227-4239.
[236] B. Schartel, P. Pötschke, U. Knoll, and M. Abdel-Goad. Fire behaviour of polyamide 6-multiwall carbon nanotube nanocomposites. European Polymer Journal, Volume 41, Issue 5, 2005, Pages 1061-1070.
[237] A. Fina, S. Bocchini, and G. Camino. Catalytic fire retardant nanocomposites. Polymer Degradation and Stability, Volume 93, Issue 9, 2008, Pages 1647-1655.
[238] X. Wang, E. N. Kalali, J.-T. Wan, and D.-Y. Wang. Carbon-family materials for flame retardant polymeric materials. Progress in Polymer Science, Volume 69, 2017, Pages 22-46.
[239] T. Kashiwagi, M. Mu, K. Winey, B. Cipriano, S. R. Raghavan, S. Pack, M. Rafailovich, Y. Yang, E. Grulke, J. Shields, R. Harris, and J. Douglas. Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer, Volume 49, Issue 20, 2008, Pages 4358-4368.
[240] M. C. Costache, M. J. Heidecker, E. Manias, G. Camino, A. Frache, G. Beyer, R. K. Gupta, and C. A. Wilkie. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer, Volume 48, Issue 22, 2007, Pages 6532-6545.
[241] J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, Volume 40, Issue 21, 1999, Pages 5967-5971.
[242] S. U. Khan, J. R. Pothnis, and J.-K. Kim. Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, Volume 49, 2013, Pages 26-34.
[243] X. Song, S. Liu, Z. Gan, Q. Lv, H. Cao, and H. Yan. Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing. Microelectronic Engineering, Volume 86, Issue 11, 2009, Pages 2330-2333.
[244] S. M. Vemuru, R. Wahi, S. Nagarajaiah, and P. M. Ajayan. Strain sensing using a multiwalled carbon nanotube film. The Journal of Strain Analysis for Engineering Design, Volume 44, Issue 7, 2009, Pages 555-562.
[245] C.-L. Chen, E. Lopez, Y.-J. Jung, S. Müftü, S. Selvarasah, and M. R. Dokmeci. Mechanical and electrical evaluation of parylene-C encapsulated carbon nanotube networks on a flexible substrate. Applied Physics Letters, Volume 93, Issue 9, 2008, Pages 1-3.
[246] K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns. Durable transparent carbon nanotube films for flexible device components. Thin Solid Films, Volume 518, Issue 23, 2010, Pages 6977-6983.
[247] I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi. A carbon nanotube strain sensor for structural health monitoring. Smart Materials and Structures, Volume 15, Issue 3, 2006, Pages 737-748.
[248] C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. Dai, A. Thess, R. E. Smalley, A. R. M. Verschueren, S. J. Tans, and C. Dekker. Temperature-dependent resistivity of single-wall carbon nanotubes. Europhysics Letters, Volume 41, Number 6, 1998, Pages 683-688.
Author Information
  • Department of Energy and Power Engineering, Henan Polytechnic University, Jiaozuo, China

  • Department of Energy and Power Engineering, Henan Polytechnic University, Jiaozuo, China

Cite This Article
  • APA Style

    Junjie Chen, Longfei Yan. (2017). Recent Advances in Carbon Nanotube-Polymer Composites. Advances in Materials, 6(6), 129-148. https://doi.org/10.11648/j.am.20170606.14

    Copy | Download

    ACS Style

    Junjie Chen; Longfei Yan. Recent Advances in Carbon Nanotube-Polymer Composites. Adv. Mater. 2017, 6(6), 129-148. doi: 10.11648/j.am.20170606.14

    Copy | Download

    AMA Style

    Junjie Chen, Longfei Yan. Recent Advances in Carbon Nanotube-Polymer Composites. Adv Mater. 2017;6(6):129-148. doi: 10.11648/j.am.20170606.14

    Copy | Download

  • @article{10.11648/j.am.20170606.14,
      author = {Junjie Chen and Longfei Yan},
      title = {Recent Advances in Carbon Nanotube-Polymer Composites},
      journal = {Advances in Materials},
      volume = {6},
      number = {6},
      pages = {129-148},
      doi = {10.11648/j.am.20170606.14},
      url = {https://doi.org/10.11648/j.am.20170606.14},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.am.20170606.14},
      abstract = {Carbon nanotubes demonstrate remarkable mechanical, thermal, and electrical properties, which allow a number of exciting potential applications. In this article, the most recent progress in research on the development of carbon nanotube-polymer composites is critically reviewed, with emphasis on recent advances in the principles and techniques for carbon nanotube functionalization. Various functionalization approaches and their role in the preparation of carbon nanotube-polymer composites with improved mechanical and electrical properties are discussed. The interaction between carbon nanotubes and polymers is also reviewed. Various techniques of carbon nanotube-polymer interaction measurements, including experimental and modelling studies, are described. Different methods of interaction improvement, mainly categorized under covalent and noncovalent interactions, are also described afterwards. An optimum carbon nanotube-polymer interaction is a crucial factor towards reaching the full potential of carbon nanotubes in nanocomposites. Potential topics of oncoming focus along with the potential applications of carbon nanotube-polymer composites are highlighted.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Recent Advances in Carbon Nanotube-Polymer Composites
    AU  - Junjie Chen
    AU  - Longfei Yan
    Y1  - 2017/11/24
    PY  - 2017
    N1  - https://doi.org/10.11648/j.am.20170606.14
    DO  - 10.11648/j.am.20170606.14
    T2  - Advances in Materials
    JF  - Advances in Materials
    JO  - Advances in Materials
    SP  - 129
    EP  - 148
    PB  - Science Publishing Group
    SN  - 2327-252X
    UR  - https://doi.org/10.11648/j.am.20170606.14
    AB  - Carbon nanotubes demonstrate remarkable mechanical, thermal, and electrical properties, which allow a number of exciting potential applications. In this article, the most recent progress in research on the development of carbon nanotube-polymer composites is critically reviewed, with emphasis on recent advances in the principles and techniques for carbon nanotube functionalization. Various functionalization approaches and their role in the preparation of carbon nanotube-polymer composites with improved mechanical and electrical properties are discussed. The interaction between carbon nanotubes and polymers is also reviewed. Various techniques of carbon nanotube-polymer interaction measurements, including experimental and modelling studies, are described. Different methods of interaction improvement, mainly categorized under covalent and noncovalent interactions, are also described afterwards. An optimum carbon nanotube-polymer interaction is a crucial factor towards reaching the full potential of carbon nanotubes in nanocomposites. Potential topics of oncoming focus along with the potential applications of carbon nanotube-polymer composites are highlighted.
    VL  - 6
    IS  - 6
    ER  - 

    Copy | Download

  • Sections