Synthesis and Electrochemical Properties of CuFeO2 as Negative Electrodes for Sodium-Ion Batteries
American Journal of Physical Chemistry
Volume 4, Issue 2, April 2015, Pages: 16-20
Received: Mar. 29, 2015; Accepted: Apr. 3, 2015; Published: Apr. 14, 2015
Views 5612      Downloads 396
Authors
Yuhki Yui, Energy and Environment Systems Laboratories, NTT Corporation, Kanagawa 243-0198, Japan
Yoko Ono, Energy and Environment Systems Laboratories, NTT Corporation, Kanagawa 243-0198, Japan
Masahiko Hayashi, Energy and Environment Systems Laboratories, NTT Corporation, Kanagawa 243-0198, Japan
Jiro Nakamura, Energy and Environment Systems Laboratories, NTT Corporation, Kanagawa 243-0198, Japan
Article Tools
Follow on us
Abstract
This paper investigates the electrochemical properties of CuFeO2 prepared by using a malate precursor method as negative electrodes for sodium-ion batteries. In the voltage range of 0.01 to 3.0 V, the oxide calcined at 750C shows a poor cycle property of 27 mAh/g at 10 cycles, although it exhibits the large first discharge capacity of 579 mAh/g. The cycle property is improved to up to 122 mAh/g at 10 cycles by employing a cycle condition with the voltage range of 0.01 to 1.5 V. The results suggest that the sodium-ion insertion/extraction mechanism in CuFeO2 would involve valence changes of Fe ions in the oxide from the Fe3+ state to Fe0 state in the discharge process and from Fe0 to Fe3+ in the charge process.
Keywords
Sodium-Ion Battery, Negative Electrode, CuFeO2
To cite this article
Yuhki Yui, Yoko Ono, Masahiko Hayashi, Jiro Nakamura, Synthesis and Electrochemical Properties of CuFeO2 as Negative Electrodes for Sodium-Ion Batteries, American Journal of Physical Chemistry. Vol. 4, No. 2, 2015, pp. 16-20. doi: 10.11648/j.ajpc.20150402.11
References
[1]
M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, “Sodium-Ion Batteries,” Adv. Funct. Mater., 2013, 23, pp. 947-958.
[2]
S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, and K. Fujiwara, “Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries” Adv. Fanct. Mater., 2011, 21, pp. 3859-3867.
[3]
X. Xia, M. N. Obrovac, and J. R. Dahn, “Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes,” Electrochem Solid State Lett., 2011, 14, pp.A130-133.
[4]
K. Gotoh, T. Ishikawa. S. Shimadzu, N. Yabuuchi, S. Komaba, K. Takeda, A. Goto, K. Deguchi, S. Ohki, K. Hashi, T. Shimizu, and H. Ishida, “NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery,” J. Power Sources, 2013, 225, pp.137-140.
[5]
D. A. Stevens, and J. R. Dahn, “High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries,” J. Electrochem. Soc., 2000, 147, pp. 1271-1273.
[6]
L. D. Ellis, T. D. Hatchard, and M. N. Obrovac, “Reversible Insertion of Sodium in Tin,” J. Electrochem. Soc., 2012, 159, pp. A1801-1805.
[7]
S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, and S. Kuze, “Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell,” Electrochem. Commun., 2012, 21, pp.65-68.
[8]
M. K. Datta, R. Epur, P. Saha, K. Kadakia, S. K. Park, and P. N. Kumta, “Tin and graphite based nanocomposites: Potential anode for sodium ion batteries,” J. Power Sources, 2013, 225, pp.316-322.
[9]
Y. Yui, Y. Ono, M. Hayashi, Y. Nemoto, K. Hayashi, K. Asakura, and H. Kitabayashi, “Sodium-ion Insertion/Extraction Properties of Sn-Co Anodes and Na pre-doped Sn-Co Anodes,” J. Electrochem. Soc., 2015, 162, A3098-A3102.
[10]
A. M. Sukeshini, H. Kobayashi, M. Tabuchi, and H. Kageyama, “Physicochemical characterization of CuFeO2 and lithium intercalation,” Solid State Ionics, 2000, 128, pp.33-41.
[11]
H. Pan, X. Lu, X. Yu, Y.-S. Hu, H. Li, X.-Q. Yang, and L. Chen, “Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries,” Adv. Energy Mater., 2013, 9, pp.1186-1194.
[12]
P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, and M. R. Palacin, “Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries,” Chem. Mater., 2011, 23, pp.4109-4111.
[13]
P. J. Naeyaert, M. Avdeev, N. Sharma, H. B. Yahia, and C. D. Ling, “Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium-Ion Battery Anode Material,” Chem. Mater., 2014, 26, pp.7067-7072.
[14]
H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, and T. Rajh, “Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries,” J. Phys. Chem. Lett., 2012, 2, pp.2560-2565.
[15]
L. Wu, D. Buchholz, D. Bresser, L. G. Chagas, and S. Passerini, “Anatase TiO2 nanoparticles for high power sodium-ion anodes,” J. Power Sources, 2014, 251, pp.379-385.
[16]
S. Hariharan, K. Saravanan, and P. Balaya, “-MoO3: A high performance anode material for sodium-ion batteries,” Electrochem. Commun., 2013, 31, pp.5-9.
[17]
S. Komaba, T. Mikumo, N. Yabuuchi, A. Ogata, H. Yoshida, and Y. Yamada, “Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and -Fe2O3 for Rechargeable Batteries,” J. Electrochem. Soc., 2010, 157,pp. A60-A65.
[18]
P. Dordor, J. P. Chaminade, A. Wichainchai, E. Marquestaut, J.P. Doumerc, M. Pouchard, and P. Hagenmuller, “Crystal growth and electrical properties of CuFeO2 single crystals,” J. Solid State Chem., 1988, 75, pp.105-112.
[19]
L. Lu, J.-Z. Wang, X.-B. Zhu, X.-W. Gao, and H.-K. Liu, “High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium-ion batteries,” J. Power Sources, 2011, 196, pp.7025-7029.
[20]
A. M. Sukeshini, H. Kobayashi, M. Tabuchi, and H. Kageyama, “Physicochemical characterization of CuFeO2 and lithium intercalation,” Solid State Ionics, 2000, 128, pp.33-41.
[21]
C. D. Wagner, C. J. Powell, J. W. Allison, and J. R. Rumble, “NIST X-ray Photoelectron Spectroscopy Database Version 2.0,” National Institute of Standards and Technology, 1997.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186