Science Journal of Chemistry

| Peer-Reviewed |

A Study of Effect of Dye Structure on Polyelectrolyte Induced Metachromasy

Received: 30 August 2014    Accepted: 07 September 2014    Published: 23 September 2014
Views:       Downloads:

Share This Article

Abstract

The interaction of two cationic dyes, namely, Azure B (AB) and Pinacyanol chloride (Pcyn) with an anionic polyelectrolyte, namely, sodium carrageenate (NaCar) has been investigated by Spectrophotometric method. The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between Azure B and sodium carrageenate was found to be lesser than that formed between Pinacyanol chloride and sodium carrageenate. This fact was further confirmed by reversal studies using alcohols, urea surfactants and electrolytes. The interaction parameters revealed that binding between Azure B and sodium carrageenate was mainly due to electrostatic interaction while that between Pinacyanol chloride and carrageenate is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye and its relation to metachromasy has been discussed.

DOI 10.11648/j.sjc.s.2014020602.11
Published in Science Journal of Chemistry (Volume 2, Issue 6-2, December 2014)

This article belongs to the Special Issue Polyelectrolytes & Dyes

Page(s) 1-7
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Cationic Dyes, Metachromasy, Sodium Carrageenate, Dye Structure, Aggregation

References
[1] AMitra,R.KNath, SBiswas.,A.K., Chakraborty, A.K., Panda MitraA., J.Photochrem.Photobiol, A: Chem, vol.111, 1997, pp 157.
[2] A.Mitra, A.K.Chakraborty, J.Photochem.Photobiol.A:Chem., vol.178, 2006, pp198.
[3] R.W Horbin., Biochemie.Biochem., vol.77, 2002, pp 3.
[4] BergeronJ.A., M. J Singer, Biophys.Biochem.Cytol. vol.4,1958, pp.433.
[5] M.K.Pal ,B.K.Ghosh,Makromol.Chem.vol. 181,1980, pp1459 .
[6] Norden B., Kubista M., in: B.Samori, E.W.Thulstrup (Eds.), Polarized Spectroscopy ofordered systems, vol.242, Kulwer Academic Publisher, Dordrecht, Holland, 1988.
[7] Sabate R., EsterlichJ., J.Phys.ChemB, vol.107, 2003, pp.4137.
[8] von Berlepsch H., Kirstein S., Bottcher, C, Langmuir, vol.18, 2002, pp.769.
[9] Sabate R., Gallardo M., De la Maza A., J.Esterlich, Langmuir,vol.17,2001, pp.6433.
[10] Berret J.F., Cristobal G., Hervel P., Oberdisse J., Grillo I., vol.E9, Eur.Phys J 2002, pp.301.
[11] Meszaos R., Varga, I., Gilanyi T., J.Phys.Chem.B vol.117, 2005, pp.13538.
[12] Monteux C . ,WilliamsC.E., Meunier J., Anthony O., BergeronV., LangmuirVol.20,2004,pp. 57.
[13] Honda C., Kamizono H.,.Matsumoto K., Endo K., J.Colloid Interface Sci vol.278.2004, pp.310.
[14] MoulikS.P., GuptaS,.DasA.R., Makromol.Chem,vol.181, 1980,pp. 1459.
[15] Lee J., Moroi Y,,J.Colloid Interface Sci. 2 vol.273, 2004, pp.645.
[16] Mesa C.L., J.Colloid Interface Sci . vol.286, 2005, pp.148.
[17] Konradi R., Ruhe J., Macromolecules vol.38, 2005, pp.6140.
[18] VilletiM., BorsaliA., Crespo R., SoldiV., Fukada K., Macromol.Chem.Phys. vol.205, 2004, pp.907.
[19] Fundin J, Hansson P., Brown W., Lidegran I., Macromolecules vo.30, 1997, pp.1118.
[20] Mitra A., Nath A. R., and ChakrabortyA.K., Colloid Polym Sci. , vol.271,1993, pp.1042.
[21] Panda A.K., Chakraborty A.K., J.Colloid Interface Sci. vol.203,1998, pp.260.
[22] Chakraborty, A.K,.Nath, R.K, Spectrochim Acta vol.45A,1989, pp.981.
[23] Jain N. , Trabelsi S., Guillot S., Meloughlin D. , Langevin D., Leteiller P., Turmine, M., Langmuir, vol..20,2004, pp.8496.
[24] Bakshi M.S., Varga I., GilanyiT., J.Phys.Chem.B, vol. 109, 2005, pp.13538.
[25] Balomenou L., and Bokias G., Langmuir, vol. 21,2005, pp.9038.
[26] Bakshi M.S., and Sachar S.,Colloid Polym.Sci. vol.283, 2005, pp.671.
[27] Romani A.P., Gehlen M.H., Itri R., Langmuir, vol.21,2005, pp.127.
[28] Wang C., Tam K.C., Langmuir, vol.18,2002, pp. 6484.
[29] Sjogren H ., Ericsson C.A., Evenas J., Ulvenlund S., Biophys J., vol.89, 2005, pp.4219 .
[30] Zhu D.M., EvansR.K., Langmuir, 2006, 22, pp.3735.
[31] Chatterjee A., Moulik S.P., Majhi P.R., and Sanyal S.K., Biophys Chem.vol.98, 2002, 98, pp.313.
[32] Mata J., Patel J., Jain N., Ghosh G., Bahadu, P., J.Colloid Interface Sci. 2006, 297 , pp.797.
[33] Jiao Q.C., Liu Q., Sun C., and He H., Talanta, vol.1095,1999, , pp.48.
[34] Liu Q., and Jiao Q.C ., Spectrosc.Lett., vol.31, 1998, pp.913.
[35] Jiao Q.C. and Liu Q., Spectrochim. Acta, 1vol.55A,999, pp.1667.
[36] Jiao Q.C and Liu Q., Anal.Lett. vol.31,1998, pp.1311.
[37] Jiao Q.C., and Liu Q, Spectrosc.Lett.vol.31, 1998, pp.1353.
[38] Hugglin D., Seiffert, A., Zimmerman, W, Histochemistry, vol.86,1986, pp.71.
[39] Mitra A., Nath R.K., and Chakraborty A.K., Colloid Polym. Sci., vol.271,1993, pp.1042.
[40] Basu. S., Gupta A.K., and Rohatgi-Mukherjee K.K, J.Indian Chem. Soc.1vol.59,982, pp.578 .
[41] Pal M.K., SchubertM. J. Histochem Cytoche., vol.9,1961,pp. 673.
[42] Pal M.K,, and Ghosh B.K., Macromol.Chem, vol.181,1980, pp. 1459.
[43] Pal M.K and Ghosh B.K., Macromol.Chem. vol.180,1979, pp.959.
[44] Pal M.K and Schubert M ., J.Phys.Chem., vol.17,1963,pp.182.
[45] Frank. H.S., and Evans M.W., J.Chem.Phys. vol.17,1945, pp.507.
[46] Kauzmann W., Advan.Protein.Chem.vol.14, 1959, pp1.
[47] Bruning and Holtzer A., J.Am.Chem Soc.,vol.83,1961, pp.4865.
[48] WhitneyP.L., and Tanford C., J.Biol.Chem vol.237,1962, pp.1735 .
[49] Mukerjee P., and Ray A. , J.Phys.Chem. vol.67,1963, pp.190.
[50] Frank H.S. and Quist A.S., J.Chem.Phys.,1vol.34, 961, pp.604.
[51] Rabinowitch E., Epstein., L.F J.Am.Chem.Soc., vol.63,1941,pp.69.
[52] Romani A.P., Gehlen M.H. and Itri R., Langmuir, vol.21,2005, pp.127.
[53] Levine A., Schubert M., J.Am.Chem.Soc., vol.74, 1958, pp.5702.
[54] Dasgupta S., Nath R.K., Biswas S., Hossain J., Mitra A., and Panda A.K., Colloids SurfA: Physicochem Eng.Aspects, vol.302, 2007, pp.17.
[55] RoseNJ; DragoRS; Journal of American Chemical Society, 1vol.81,959, pp.6138.
[56] Nandini R, Vishalakshi B, e-journal of chemistry, vol.8,2011, pp.S253.
Author Information
  • Department of Chemistry, MITE, Moodabidri-574 226 (DK), Karnataka, India

Cite This Article
  • APA Style

    Nandini Ratnakar. (2014). A Study of Effect of Dye Structure on Polyelectrolyte Induced Metachromasy. Science Journal of Chemistry, 2(6-2), 1-7. https://doi.org/10.11648/j.sjc.s.2014020602.11

    Copy | Download

    ACS Style

    Nandini Ratnakar. A Study of Effect of Dye Structure on Polyelectrolyte Induced Metachromasy. Sci. J. Chem. 2014, 2(6-2), 1-7. doi: 10.11648/j.sjc.s.2014020602.11

    Copy | Download

    AMA Style

    Nandini Ratnakar. A Study of Effect of Dye Structure on Polyelectrolyte Induced Metachromasy. Sci J Chem. 2014;2(6-2):1-7. doi: 10.11648/j.sjc.s.2014020602.11

    Copy | Download

  • @article{10.11648/j.sjc.s.2014020602.11,
      author = {Nandini Ratnakar},
      title = {A Study of Effect of Dye Structure on Polyelectrolyte Induced Metachromasy},
      journal = {Science Journal of Chemistry},
      volume = {2},
      number = {6-2},
      pages = {1-7},
      doi = {10.11648/j.sjc.s.2014020602.11},
      url = {https://doi.org/10.11648/j.sjc.s.2014020602.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.sjc.s.2014020602.11},
      abstract = {The interaction of two cationic dyes, namely, Azure B (AB) and Pinacyanol chloride (Pcyn) with an anionic polyelectrolyte, namely, sodium carrageenate (NaCar) has been investigated by Spectrophotometric method. The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between Azure B and sodium carrageenate was found to be lesser than that formed between Pinacyanol chloride and sodium carrageenate. This fact was further confirmed by reversal studies using alcohols, urea surfactants and electrolytes. The interaction parameters revealed that binding between Azure B and sodium carrageenate was mainly due to electrostatic interaction while that between Pinacyanol chloride and carrageenate is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye and its relation to metachromasy has been discussed.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Study of Effect of Dye Structure on Polyelectrolyte Induced Metachromasy
    AU  - Nandini Ratnakar
    Y1  - 2014/09/23
    PY  - 2014
    N1  - https://doi.org/10.11648/j.sjc.s.2014020602.11
    DO  - 10.11648/j.sjc.s.2014020602.11
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 1
    EP  - 7
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.s.2014020602.11
    AB  - The interaction of two cationic dyes, namely, Azure B (AB) and Pinacyanol chloride (Pcyn) with an anionic polyelectrolyte, namely, sodium carrageenate (NaCar) has been investigated by Spectrophotometric method. The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between Azure B and sodium carrageenate was found to be lesser than that formed between Pinacyanol chloride and sodium carrageenate. This fact was further confirmed by reversal studies using alcohols, urea surfactants and electrolytes. The interaction parameters revealed that binding between Azure B and sodium carrageenate was mainly due to electrostatic interaction while that between Pinacyanol chloride and carrageenate is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye and its relation to metachromasy has been discussed.
    VL  - 2
    IS  - 6-2
    ER  - 

    Copy | Download

  • Sections