Please enter verification code
Confirm
Inhibitory Effect and Antimicrobial Activity of Secondary Metabolites of Khaya Senegalensis (Desr.) A. Juss. (Meliaceae)
Science Journal of Chemistry
Volume 8, Issue 4, August 2020, Pages: 81-94
Received: Aug. 3, 2020; Accepted: Aug. 21, 2020; Published: Sep. 17, 2020
Views 118      Downloads 51
Authors
Yves Oscar Ditchou Nganso, Department of Chemistry, University of Maroua, Maroua, Cameroon
Emmanuella Marthe Satchet Tchana, Department of Organic Chemistry, University of Yaoundé I, Yaoundé, Cameroon
Alex Doutsing Kahouo, Department of Chemistry, University of Maroua, Maroua, Cameroon
Ange Gabrielle à Ngnoung Amang, Department of Chemistry, University of Maroua, Maroua, Cameroon
Kombo Abah, Department of Chemistry, University of Maroua, Maroua, Cameroon
Hermann Fomena, Department of Chemistry, University of Maroua, Maroua, Cameroon
Hamadou Mamoudou, Department of Biological Sciences, University of Maroua, Maroua, Cameroon; National Advanced School of Engineering of Maroua, University of Maroua, Maroua, Cameroon
Article Tools
Follow on us
Abstract
This present study investigates the in vitro inhibitory effect and antimicrobial activity of secondary metabolites isolated from the roots of Khaya senegalensis, a plant of the Meliaceae family. Khaya senegalensis is widely used in traditional medicine for the treatment of various illnesses such as: fever, stomach ache, diarrhea, dysentery and anemia. The chemical study of the extract with CH2Cl2-MeOH (1:1) led to the isolation of five compounds: Alphitolic acid (1); Epigouanic acid (2); Methyl angolensate (3); Rohituca-3 (4) and 5, 6, 7, 3′, 4′-pentamethoxyflavone or Sinensetin (5). Alphitolic acid (1), Rohituca-3 (4) and 5, 6, 7, 3′, 4′-pentamethoxyflavone or Sinensetin (5) were isolated from the roots of this plant for the first time. The structures of the isolated compounds have been elucidated on the basis of spectroscopic analysis and a comparison of their spectral data with those reported in the literature. The results of the antibiogram tests showed that the strain of Escherichia coli is sensitive to all the antibiotics tested except Ceftazidime, a Cephalosporin. The Staphylococcus aureus strain is resistant to almost all the antibiotics tested except Amikacin, an aminoglycoside. This is because the enzymes diffuse through the inter and intraspecific transmission of genes through a plasmid. The antibiogram made it possible to establish the sensitivity profile of the strains tested with regard to certain antibiotics. The antimicrobial tests carried out showed that the inhibitory effect of the compounds isolated from Khaya senegalensis on the four bacterial strains tested at the concentration of 25 mg/mL positively influenced at least one of the microbial strains. However, compounds 1, 2 and 3 did not show any bacterial growth inhibitory activity against Proteus vulgaris. MIC obtained for microbiological tests varied between 0.097 and 0.195 mg/mL for the most sensitive strains of Escherichia coli and Pseudomonas aeruginosa, which revealed the highest antibacterial powers. Furthermore, these results therefore show a great variability in the bacteriostatic qualities of the compounds with respect to the different strains. The two Gram-positive strains of Staphylococcus aureus are more sensitive than the other Gram-negative bacterial strains tested. From the antibacterial activity, it appears that the compounds isolated from this plant have a bactericidal activity against Escherichia coli and Pseudomonas aeruginosa. This bactericide could justify their use in herbal medicine against bacterial infections.
Keywords
Inhibitory Effect, Antimicrobial Activity, Secondary Metabolites, Khaya senegalensis, Meliaceae
To cite this article
Yves Oscar Ditchou Nganso, Emmanuella Marthe Satchet Tchana, Alex Doutsing Kahouo, Ange Gabrielle à Ngnoung Amang, Kombo Abah, Hermann Fomena, Hamadou Mamoudou, Inhibitory Effect and Antimicrobial Activity of Secondary Metabolites of Khaya Senegalensis (Desr.) A. Juss. (Meliaceae), Science Journal of Chemistry. Vol. 8, No. 4, 2020, pp. 81-94. doi: 10.11648/j.sjc.20200804.13
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Paterson, D. L., Doi, Y. (2017). Enterobacteriaceae. Springer International Publishing AG 2017. D. L. Mayers et al. (eds.), Antimicrobial Drug Resistance. DOI: 10.1007/978-3-319-47266-9_8.
[2]
Talaro, K. P., and Chess, B. (2018). Chapter 20: The Gram-Negative Bacilli of Medical Importance in Foundations in Microbiology, Tenth Edition. Mc Graw Hill Education: 947p.
[3]
Armbruster, C. E., Mobley, H. L, T., and Pearson, M. M. (2018). Pathogenesis of Proteus mirabilis infection. American Society for Microbiology: 73p. DOI: 10.1128/ecosalplus.ESP-0009-2017.
[4]
OMS. (2014). Premier rapport de l’OMS sur la résistance aux antibiotiques: une menace grave d’ampleur mondiale. OMS, Organisation Mondiale de la Santé, 20 avenue Appia, 1211 Genève 27 (Suisse). 6p.
[5]
CDC. (2013). Antibiotic Resistance Threats in the United States, 2013. U. S. Department of Health and Human Services. Centers for Disease Control and Prevention; 113p. DOI: http://dx.doi.org/10.15620/cdc:82532.
[6]
Adams, R. J., Kim, S. S., Mollenkop, D. F., Mathys, D. A., Schuenemann, G. M., Daniels, J. B., and Wirrum, T. E. (2018). Antimicrobial-resistance Enterobacteriaceae recovered from companion animal and lifestock environments. Zoonoses Public Health, 00: 1-9. DOI: 10.1111/zph.12462.
[7]
Armand-Lefèvre, L., Andremont, A., Ruppé, A. (2018). Travel and acquisition of multidrug- resistant. Enterobacteriaceae. Médecine et Maladies Infectieuses. DOI: 10.1016/j.medmal.2018.02.005.
[8]
Bliven, K., Lampel, K, A. (2017). Chapter 6: Shigella In: Foodborne Diseases, third edition edited by Christine E. R. Dodd, Tim Aldsworth, Richard A. Stein, Dean O. Cliver, Hans P. Riemann. Elsevier Academic Press: 171-188.
[9]
Madec, J. Y., Haenni, M., Jouy, E., Granier, S., Weil, F. X, Hello, S. L. (2012). Les Entérobactéries résistantes aux céphalosporines de dernières générations: de l’animal à l’Homme. Bulletin épidémiologique, santé animale et alimentation n°53/Spécial Antibiotiques et Antibiorésistances: 37-39.
[10]
Carle, S. (2009). La résistance aux antibiotiques: un enjeu de santé publique important. Pharmactuel, 42 (2): 6-21.
[11]
Li, X., Nie, C., Zhang, Z., Wang, Q., Shao, P., Zhao, Q., Chen, Y., Wang, D., Li, Y., Jiao, W., Li, L., Qin, S., He, L., Jia, Y., Ning, Z., Qu, L. (2017). Evaluation of genetic resistance to Salmonella Pullorum in three chicken lines. Poultry Science, 97 (3): 764-769. DOI: 10.3382/ps/pex354.
[12]
MSF. (2018). Bulletin d’information Mars-Avril 2018. Médecins Sans Frontières, MSF Suisse-Mission Cameroun, Bureau situé 300m pares ELECAM, Rue 1.828-Bastos, Yaoundé: 4p.
[13]
Akova, M., Daikos, G. L., Tzouvelekis, L., Carmeli, Y. (2012). Interventional strategies and current clinical experience with carbapenemase producing Gram-negative bacteria. Clinical Microbiology and Infection, (18): 439-448. DOI: 10.1111/j.1469-0691.2012.03823.x.
[14]
OMS. (2018a). Infections à Salmonella (non typhiques). OMS, Organisation Mondiale de la Santé, 20 avenue Appia, 1211 Genève 27 (Suisse): 6p.
[15]
Awouafack, M. D., McGaw, L.., Gottfried, S. et al. (2013). Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae). BMC Complement Altern Med, 13: 289. DOI: 10.1186/1472-6882-13-289.
[16]
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clin. Microbiol. Rev, 12: 564-582. DOI: 10.1128/CMR.12.4.564.
[17]
Parekh, J., Chanda, S. (2007). In vitro antibacterial activity of crude methanol extract of Woodfordia fruticosa Kurz flower (Lythacease). Braz. J. Microbiol, 38: 2. DOI: 10.1590/S1517-83822007000200004.
[18]
Clardy J., Walsh C. (2004). Lessons from natural molecules. Nature, 432: 829-837. DOI: 10.1038/nature03194.
[19]
Verpoorte, R., Choi Y. H., Kim H. K., (2005). Ethanopharmacology and system biology: a perfect holistic match. J Ethnopharmacol, 100: 53-56. DOI: 10.1016/j.jep.2005.05.033.
[20]
Abiodun, F and Osahon, O. (2009). Phytochemical screening and evaluation of stem bark extract of Khaya senegalensis (Meliaceae) on methicillin resistant Staphyloccocus aureus. Canadian Journal of Pure and Applied Sciences, 3 (3): 925-928.
[21]
Tao, Y., Chuan-Rui, Z, Sheng-Ping, Y., and Jian-Min, Y. (2010). Limonoids and Triterpenoids from Khaya senegalensis, J. Nat. Prod, 73 (4): 669-674. DOI: 10.1021/np1000158.
[22]
Sokpon, N., et Ouinsavi, C. (2004). Gestion des plantations de Khaya senegalensis au Bénin. Bois et forêts des tropiques, 279 (1): 37-46.
[23]
El-Tahir, A., Ibrahim, A. M, Satti, G. M. H, Theander, T. G., Kharazmi, A. and Khalid, S. A. (1998). The potential antileishmanial activity of some Sudanese medicinal plants. Phytother Res, 12: 576-579. DOI: 10.1002/(SICI)1099-1573(199812)12:8<576::AID-PTR354>3.0.CO;2-#.
[24]
Kone, W. M., Atindehou, K. K., Terreaux, C., Hostettmann, K., Traore, D. et Dosso, M. (2004). Traditional medicine in North Côte-d’Ivoire: screening of 50 medicinal plants for antibacterial activity. Journal of Ethnopharmacology, 93: 43-49. DOI: 10.1016/j.jep.2004.03.006.
[25]
Stephen, U. A., Abiodun, F., Osahon, O. and Ewaen, E. (2009). Phytochemical Analysis and Antibacterial Activity of Khaya grandifoliola Stem Bark. Journal of Biological Sciences, 9: 63-67. DOI: 10.3923/jbs.2009.63.67.
[26]
Kerharo J. et Adam G. (1974). La pharmacopée sénégalaise traditionnelle: plantes Médicinales et toxiques. Ed Vigot frères Paris ISBN 2-7114 Ŕ 0646-6.
[27]
Fagbohoun, L., Gbaguidi, A, F., Ayedoun, A. A., Moudachirou Mansourou, M. C et Vieillescazes, C. (2014). Etudes ethnobotanique et Phytochimique des plantes tinctoriales sources de colorants naturels et matériaux résineux traditionnels du Bénin dans le domaine artisanal (Ifangni/Bénin) SFE in Press.
[28]
Khalid, S. A., Friedrichsen, G. M., Kharazmi, A., Theander, T. G., Olsen, C. E. And Christensen, S. B. (1998). Limonoids from Khaya senegalensis. Phytochemistry, 49 (6): 1769-1772. DOI: 10.1016/s0031-9422(98)00284-2.
[29]
Comité de l’Antibiogramme de la société Française de Microbiologie (CA-SFM). (2017). Communiqué du comité de l’antibiogramme de la société Française de microbiologie. Société Française de Microbiologie, Institut Pasteur-Paris: 127p.
[30]
Kiehlbauch, J. A., Hannett, G. E., Salfinger, M., Archinal, W., Monserrat, C., Carlyn, C. (2000). Use of the National Committee for Clinical Laboratory Standards guidelines for disk diffusion susceptibility testing in New York state laboratories. J Clin Microbiol, 38 (9): 3341-3348. DOI: 10.1128/JCM.38.9.3341-3348.2000
[31]
Olsson-Liljequist, B., Larsson, P., Walder, M, Miörner, H. (1997). Antimicrobial susceptibility testing in Sweden. III. Methodology for susceptibility testing. Scand J Infect Dis Suppl, 105: 13-23.
[32]
Ananil, K., Hudson. J. B., Souzal, C., Akpaganal. K. Towe, G. H. N., Amason, J. T. and Gbeassor. (2000). Investigation of medicinal plants of TOGO for antiviral and antimicrobial activities. Phannaceutical Biology, 38 (1): 40-45. DOI: 10.1076/1388-0209(200001)3811-BFT040.
[33]
NCCLS. (2002). Performance standards for antimicrobial disk susceptibilty testing. 12th informational supplement. NCCLS document, M100-S12. National Committee for clinical Laboratory Standards, Wayne, Pa.
[34]
Rahal, J. J. (2006). Novel Antibiotic Combinations against Infections with Almost Completely Resistant Pseudomonas aeruginosa and Acinetobacter Species. Clinical Infectious Diseases, 43 (2): S95-S99. DOI: 10.1086/504486.
[35]
NCCLS. (1999). Methods for determining bactericidal activity of antimicrobial agents. Approved guideline, M26-A. National Committee for Clinical Laboratory Standards, Wayne, Pa.
[36]
Gossan, D. P, Alabdul Magid, A, Yao-Kouassi, P. A, et al. (2017). Triterpene glycosides from the aerial parts of Gouania longipetala. Phytochemistry, 134: 71-77. DOI: 10.1016/j.phytochem.2016.11.004.
[37]
Giacomelli, S. R., Maldaner, G., Stuker, C., Marasciulo, C., Schmidt, J. (2007). Triterpenoids from Gouania ulmifolia. Planta Med, 73: 499-501. DOI: 10.1055/s-2007-967166.
[38]
Leal, I. C., dos Santos, K. R., Júnior II, et al. (2010). Ceanothane and lupane type triterpenes from Zizyphus joazeiro-An Anti-staphylococcal evaluation. Planta Med, 76 (1): 47-52. DOI: 10.1055/s-0029-1185947.
[39]
Chouna, J. R., Nardella, F., Lenta, B. N. et al. (2016). Ceanothane-type triterpenoids from Cyphostemma adenocaule. Arch. Pharm. Res. DOI: 10.1007/s12272-016-0801-1.
[40]
Bouopda, S. P., Tamo, S. H., Riwom. E. Ndogo Eteme, O., Mundene, T. J. L., Avina Ze, J. M., et al. (2019). Effects on the phagocytosis modulation of stems extract and triterpenes from Gouania longipetala (Hemsl.), a plant of the Cameroonian pharmacopeia. J. Nat. Prod. Resour, 5 (1): 199-203. DOI: 10.30799/jnpr.073.19050101.
[41]
Miguita, C. H., Sarmento, U. C., Hamerski, L., Garcez, W. S., Garcez, F. R. Mexicanolide- and Andirobine-type limonoids from the fruits of Guarea kunthiana. Rec. Nat. Prod.2014, 8 (3): 290-293. DOI: 10.3390/molecules20010111.
[42]
Abdelgaleil1, S. A. M., Nakatani, M. (2003). Antifeeding activity of limonoids from Khaya senegalensis (Meliaceae). J. Appl. Ent, 127: 236-239. DOI: 10.1046/j.1439-0418.2003.00742.x.
[43]
Mulholland, D., Taylor, D. (1980). Limonoids from the seeds of the natal mahogany, Trichilia dregeana. Phytochemistry, 19: 2421-2425. DOI: 10.1016/S0031-9422(00)91040-9.
[44]
Gunatilaka, A., Bolzani, V., Dagne, E., Hofmann, G., Johnson, R., McCabe, F., Mattern, M. and Kingston, D. (1998). Limonoids Showing Selective Toxicity to DNA Repair Deficient Yeast and Other Constituents of Trichilia emetica, Journal of Natural Products, 61: 179-184. DOI: 10.1021/np9701687.
[45]
Junges, M. J., Jaao, B. T., Vierra, P. C. (1999). The use of 13C and 1H NMR in the structural elucidation of a new nor-lupane triterpènes. J. Braz. Chem. Soc, 10: 317-320. DOI: 10.1590/S0103-50531999000400011.
[46]
Duan, L., Dou, L., Yu, K., Guo, L., Bai-Zhong, C., Li, P., Liu, E. (2017). Polymethoxyflavones in peel of Citrus reticulata ‘Chachi’ and their biological activities. Food Chem, 234: 254-261. DOI: 10.1016/j.foodchem.2017.05.018.
[47]
Zhenqing Li., Ziyan Zhao., Zhiqin Zhou. (2018). Simultaneous Separation and Purification of Five Polymethoxylated Flavones from “Dahongpao” Tangerine (Citrus tangerina Tanaka) Using Macroporous Adsorptive Resins Combined with Prep-HPLC. Molecules, 23: 2660. DOI: 10.3390/molecules23102660.
[48]
Walsh, C. (2003). Section III: Antibiotic resistance In: Antibiotics: actions, origins, resistance. American Society for Microbiology (ASM) Press: 89-155.
[49]
Bidet, P., and Bingen, E. (2011). Chapitre 34.2: Enterobacteriaceae (à l’exception du genre Yersinia): in Bactériologie Médicale Techniques usuelles by François Denis, Marie-Cécile Ploy, Christian Martin, Édouard Bingen and Roland Quentin. Elsevier Masson: 631p.
[50]
OMS. (2018b). Antimicrobial resistance. OMS, Organisation Mondiale de la Santé, 20 avenue Appia, 1211 Genève 27 (Suisse).
[51]
Hasnain, A., Nasim, W., Mubarak, H., Mirza, N., Khan, S., Su, X., Ahmed, S., and Hashmi, M, Z. (2017). Chapter 2: Antibiotics resistance genes in Antibiotics and Antibiotics resistance genes in soils: monitoring, toxicity, risk assessment and management by Hashmi, M, Z., Strezok, V., and Varma, A. Springer International Publishing, 51: 19-38. DOI https://doi.org/10.1007/978-3-319-66260-2_2.
[52]
Laid, M. M. E. F., Hegazy and Ahmed, A. A. (2008). Sesquiterpene lactones from Algerian Artemisia herbaalba, Phytochemistry Lett, 1: 85-88. DOI: 10.1016/j.phytol.2008.04.002.
[53]
Atto V, Koffi, D. P., Monteomo. G. F., Adeoti, M. F. (2016). Phytochemical Screening of Sclerocarya birrea (Anacardiaceae) and Khaya senegalensis (Meliaceae) Antidiabetic Plants. Int. J. Pharm. Chem, 2 (1): 1-5. DOI: 10.11648/j.ijpc.201602 01.11.
[54]
Shan, B., Cai, Y. Z., Brooks, J. D., Corke, H. (2007). The in vitro antibacterial activity of dietary spice and medicinal herb extracts’’. International J Food Microbiology, 117: 112-119. DOI: 10.1016/j.ijfoodmicro.2007.03.003.
[55]
Mariana, R., Houde, R., Tatjana Stevanovic, M. Sci., ing. (2010). Département des sciences du bois et de la forêt, CRB, Université Laval Potentiel de Développement lié aux extractibles: État des connaissances et revue des marchés.
[56]
Kil, H. Y., Seong, E. S., Ghimire, B. K., Chung, I. M., Kwon, S. S et al. (2009). Antioxidant and antimicrobial activities of crude sorghum extract, Food Chem, 115: 1234-1239. DOI: 10.1016/j.foodchem.2009.01.032.
[57]
AL-Habib, A., AL-Saleh, E., Safer, A., Afzal, M. (2010). Bactericidal effects of grape seed extracts on methicillin resistant Staphylococcus aureus (MRSA), J. Toxicol. Sci, 35: 357-364. DOI: 10.2131/jts.35.357.
[58]
Kumar, K. A., Narayani, M., Subanthini, A., Jayakumar, M. (2011). Antimicrobial activity and phytochemical analysis of citrus fruit peels-utilization of fruit waste. Int. J. Eng. Sci. Tech, 3: 5414-5421.
[59]
Souza, J. G., Toledo, A. G., Santana, C. B., Santos, C. V., Mallmann, A. P et al. (2017). Chemical composition and antibacterial activity of essential oil and leaf extracts of Zanthoxylum caribaeum Lam. against serotypes of Salmonella, Rev. Bras. Saude Prod. Anim. Salvador, 18: 446-453. DOI: 10.1590/s1519-99402017000300005.
[60]
Babayi, H., Kolo, I, Okogum, J. I. (2004). The antimicrobial activities of methanolic extracts of Eucalyptus camaldulensis and Terminalia catappa against some pathogenic microorganisms. Biochemistry, 16 (2): 102-5. DOI: 10.4314/biokem.v16i2.32578.
[61]
Ulanowska, K. (2006). Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch. Microbial, 184 (5): 271-8. DOI: 10.1007/s00203-005-0063-7.
[62]
Cushnie, T. P, Hamilthoh, V. E. S, Lamb, A. J. (2003). Assessement of the antimicrobial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiol Res, 158 (4): 281-9. DOI: 10.1078/0944-5013-00206.
[63]
Sagdiç O. (2003). Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. Lebensm-Wiss. U.-Technol, 36: 467-473. DOI: 10.1016/S0023-6438(03)00037-9.
[64]
Rojas, A., Hernandez, L., Pereda-Miranda, R., Mata, R. (1992). Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. J. Ethnopharmacology, 35: 275-283. DOI: 10.1016/0378-8741(92)90025-M.
[65]
Marjorie, M. C. (1999). Plant Products as Antimicrobial Agents. Clinical Microbiology Reviews, 564-582. DOI: 10.1128/CMR.12.4.564.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186