| Peer-Reviewed

Atropisomeric Separation of PCB-95 by HPLC

Received: 3 February 2019    Accepted: 20 March 2019    Published: 29 June 2019
Views:       Downloads:
Abstract

2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness.

Published in Science Journal of Chemistry (Volume 7, Issue 2)
DOI 10.11648/j.sjc.20190702.12
Page(s) 39-48
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Enantioselective Studies, 2, 2’, 3, 5’, 6-Pentachlorobiphenyl, Chiralcel OJ - H, Liquid Chromatography

References
[1] S. W. Smith, Toxicol. Sci. 110, 4 (2009).
[2] S. Dai, C. S Wong, J. Qiu, M. Wang, T. Chai, L. Fang and S. Yang, J. Hazard. Mat. 280, 612 (2014).
[3] L. A. Nguye, H. He and C. Pham-Huy, Int. J. Biomed. Sci. 2, 85 (2006).
[4] L. J. Jackson and D. E Schindler, Environ. Sci. Technol. 30, 1861 (1996).
[5] J. L. Jacobson, S. W Jacobson and H. E. B. Humphrey, J. Pediatr. 116, 38 (1990).
[6] Agency for Toxic Substances and Disease Registry, Toxicological Profile for Polychlorinated Biphenyls (PCBs). (U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2000).
[7] G. P. Blanch, A. Glausch, V. Schurig, R. Serrano and M. Gonzale, J. Sep. Sci. 19, 392 (1996).
[8] H. J. Lehmler, S. J. Harrad, H. Hühnerfuss, I. Kania-Korwel, C. M. Lee, Z. Lu and C. S. Wong, Environ. Sci. Technol. 44, 2757 (2009).
[9] C. S. Wong, A. W. Garrison, P. D. Smith and W. T. Foreman, Environ. Sci. Technol. 35, 2448 (2001).
[10] L. Karasek., J. Hajslova, J. Rosmus and H. Huhnerfuss, Chemosphere 67, S22 (2007).
[11] A. Christoforidis, N. Stamatis, K. Schmieder and E. Tsachalidis, Chemosphere 70, 694 (2011).
[12] V. D. Dang, D. M. Walter and C. M. Lee, Environ. Sci. Technol. 44, 2836 (2010).
[13] X. Wu, A. Pramanik, M. W. Duffel, E. G. Hrycay, S. M. Bandiera, H. J. Lehmler and I. Kania-Korwel, Chem. Res. Toxicol. 24, 2249 (2011).
[14] M. S. Ross, E. L. Pulster, M. B. Ejsmont, E. A. Chow, C. M. Hessel, K. A. Maruya and C. S Wong, Mar. Pollut. 63, 548 (2011).
[15] M. Püttmann, F. Oesch and L. W. Robertson, Chemosphere 15, 2061 (1986).
[16] P. Haglund, Chemosphere 32, 2133 (1996).
[17] U. Pakdeesusuk, W. J. Jones, C. M. Lee, A. W. Garrison, W. L. O’Niell, D. L. Freedman, J. T. Coates and C. S. Wong, Environ. Sci. Technol. 37, 1100 (2003).
[18] M. Moo-Young, Comprehensive Biotechnology, 2nd ed (Elsevier, 2011).
[19] L. E. Rodman, S. I. Shedlofsky, A. Mannschreck, M. Püttmann, A. T. Swim and L. W. Robertson, Biochem. Pharmacol. 41, 915 (1991).
[20] H. J. Lehmler, L. W. Robertsona, A. W. Garrison, P. R. Rao and S. Kodavanti, Toxicol. Lett., 156, 391 (2005).
[21] J. Gafni, P. W. Wong and I. N. Pessah, Toxicol. Sci. 77, 72 (2004).
[22] G. A Wayman, D. Yang, D. D Bose, A. Lesiak, V. Ledoux, D. Bruun, I. N. Pessah and P. J. Leine, Environ. Health Perspect. 120, 997 (2012).
[23] A. Lesiak, M. Zhu, H. Chen, S. M. Appleyard, S. Impey, P. J. Lein and G. A. Wayman, J. Neurosci. 34, 717 (2014).
[24] N. Xu, P. Mu, Z. Yin, Q. Jia, S. Yang, Y. Qian and J. Qiu, PLoS ONE 11, e0160584 (2016).
[25] W. Feng, J. Zheng, G. Robin, Y. Dong, M. Ichikawa, Y. Inoue, T. Mori, T. Nakano and I. N. Pessah, Environ. Sci. Technol. DOI: 10.1021/acs.est.7b04446, (2017).
[26] N. Xu, P. Mu, Q. Jia, T. Chai, Z. Yin, S. Yang and J. Qiu, Chinese J. Anal. Chem. 34, 795 (2015) [In Chinese].
[27] S. K. Maddi, S. Mohan, C. Ega, C. Rao, M. Yamasani and G. K. Scriba, J. Sep. Sci. 30, 1875 (2007).
[28] W. Lao and J. Gan, J. Chromatogr. A. 1117, 184 (2006).
[29] R. Bently, Arch. Biochem. Biophys. 414 (1), 1 (2003).
[30] M. Lämmerhofer, J. Chromatogr. A. 1217 (6), 814 (2010).
[31] H. Y. Aboul-Enein and I. Ali, Chiral Separations by Liquid Chromatography and Related Technologies (CRC Press, Boca Raton, FL, 2003).
[32] Y. Okamoto and T. Ikai., Chem. Soc. Rev. 37, 2593 (2008).
[33] J. Goossens, C. Foulon, A. L. Villard, J. Y. Puy, I. Lefebvre, P. Christian, C. Vaccher and J. P. Bonte, Biomed. Chromatogr. 19, 415 (2005).
[34] L. Zhou, C. Welch, C. Lee, X. Gong, V. Antonucci and Z. Ge, J. Pharm. Biomed. Anal. 49, 964 (2009).
[35] A. Zhang, W. Gao, B. Ma, L. Jin and C. Lin, Anal. Bioanal. Chem. 403, 2665 (2012).
[36] H. Pham‐Tuan, C. Larsson, F. Hoffmann, A. Bergman, M. Fröba and H. Hühnerfuss Chirality 17, 266 (2005).
[37] S. Reich and V. Schurig, GIT Spezial. Sep. 16, 14 (1999) [In German].
[38] A. K. Badu-Tawiah (2010). Retrieved from fromhttps://knowledge.library.iup.edu/cgi/viewcontent.cgi?article=1928&context=etd
[39] W. L. Champion, J. Lee, A. W. Garrison, J. C. DiMarco, A. Matabe, K. B. Prickett, J. Chromatogr. A. 1024 (2004).
[40] G. K. Scriba, Chromatographia 75, 815 (2012).
[41] I. W. Wainer, M. C. Alembik and E. Smith, J. Chromatogr. A. 388, 65 (1987).
[42] International Conference on Harmonisation (ICH) Steering Committee. ICH Q2B Validation of Analytical Procedures: Methodology. (CPMP/ICH/281/95) (European Agency for the Evaluation of Medicinal Products, International Commission on Harmonisation, London, 1996).
[43] D. Frühauf and M. Juz, J. Chromatogr. A. 1269, 242 (2012).
Cite This Article
  • APA Style

    Prabha Ranasinghe, Christopher Olivares, William Champion Jr, Cindy Lee. (2019). Atropisomeric Separation of PCB-95 by HPLC. Science Journal of Chemistry, 7(2), 39-48. https://doi.org/10.11648/j.sjc.20190702.12

    Copy | Download

    ACS Style

    Prabha Ranasinghe; Christopher Olivares; William Champion Jr; Cindy Lee. Atropisomeric Separation of PCB-95 by HPLC. Sci. J. Chem. 2019, 7(2), 39-48. doi: 10.11648/j.sjc.20190702.12

    Copy | Download

    AMA Style

    Prabha Ranasinghe, Christopher Olivares, William Champion Jr, Cindy Lee. Atropisomeric Separation of PCB-95 by HPLC. Sci J Chem. 2019;7(2):39-48. doi: 10.11648/j.sjc.20190702.12

    Copy | Download

  • @article{10.11648/j.sjc.20190702.12,
      author = {Prabha Ranasinghe and Christopher Olivares and William Champion Jr and Cindy Lee},
      title = {Atropisomeric Separation of PCB-95 by HPLC},
      journal = {Science Journal of Chemistry},
      volume = {7},
      number = {2},
      pages = {39-48},
      doi = {10.11648/j.sjc.20190702.12},
      url = {https://doi.org/10.11648/j.sjc.20190702.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20190702.12},
      abstract = {2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Atropisomeric Separation of PCB-95 by HPLC
    AU  - Prabha Ranasinghe
    AU  - Christopher Olivares
    AU  - William Champion Jr
    AU  - Cindy Lee
    Y1  - 2019/06/29
    PY  - 2019
    N1  - https://doi.org/10.11648/j.sjc.20190702.12
    DO  - 10.11648/j.sjc.20190702.12
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 39
    EP  - 48
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20190702.12
    AB  - 2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness.
    VL  - 7
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Environmental Toxicology Program, Clemson University, Clemson, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, USA

  • Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, USA

  • Chiral Technologies Inc., West Chester, USA

  • Environmental Toxicology Program, Clemson University, Clemson, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, USA

  • Sections