International Journal of High Energy Physics

| Peer-Reviewed |

The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields

Received: 02 March 2018    Accepted: 16 March 2018    Published: 09 April 2018
Views:       Downloads:

Share This Article

Abstract

Through a preonic quasi-crystalline quark model, resulted as Bose-Einstein condensate of gammons: g*= (e+e-) and by a pre-quantum cold genesis theory of matter and fields, which predicted the existence of a preon z0 » 34 me experimentally evidenced in 2015, the elementary particles genesis is explained by the cold genesis of two preonic bosons with hexagonal symmetry: zp = 7z0; z2 = 4z0, which explains also the stability of quarks, by a mechanism with a first step of z*/(q± /q0) *- pre-cluster forming by magnetic interaction and a second step of z/(q± /q0)- collapsed cluster forming , with the aid of magnetic confinement, with z = (z0 , z2 , zp) and (q± /q0)- quark or pseudo-quark, resulting some predictions for bosonic dark matter constituents and for multi-quark particles of cold genesis, such as: 2450 me; 2685.4 me tetra-quark; 3063.8 me penta-quark; 2720 me, 3672.4 me hexa-quark; 3329 me, 4762.2 me hepta-quark.

DOI 10.11648/j.ijhep.20180501.13
Published in International Journal of High Energy Physics (Volume 5, Issue 1, June 2018)
Page(s) 12-22
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Preonic Quark, Quasi-Crystal Quark, Bose-Einstein Condensate, Particles Cold Genesis, Dark Matter, Gammon

References
[1] Arghirescu, M., “The material structures genesis and field effects”, Ed. MatrixROM, Bucharest, 2006.
[2] Arghirescu, M., “The Cold Genesis”, Ed. Invel- Multimedia, 2011; viXra, 1104.0043, 2012.
[3] Arghirescu, M., “The Cold Genesis of Matter and Fields”, Ed. SciencePG, 2015.
[4] Arghirescu, M., ‘A Quasi-Unitary Pre-Quantum theory of Particles and Fields and someTheoretical Implications’, IJHEP, july, 80-103, 2015.
[5] Arghirescu, M., ‘A preonic quasi-crystal quark model based on a cold genesis theory and on the experimentally evidenced neutral boson of 34 me’, Global Journal of Physics Vol. 5, No 1, 2016, pp. 496-504.
[6] Arghirescu, M., ”The Experimental Evidences for a 34 me Neutral Boson, Predicted by a Particles Cold Genesis Theory, as Argument for a Preonic Quark Model”, IJHEP, Vol. 3, No. 4, 2016, pp. 25-32.
[7] Islama, M. M. & Luddyb, R. J., ”High Energy Elastic Scattering in Condensate Enclosed Chiral Bag Model and TOTEM Elastic Measurements at LHC at 7TeV”, The EDS Blois, 9-13 sept. 2013.
[8] Yan, Y., & Tegen, R., “N-N Scattering and Nucleon Quark core”, Science Asia, 27, 251, 2001.
[9] Arghirescu, M., ”A Revised Model of Photon Resulted by an Etherono-QuantonicTheory of Fields”, Open Access Library Journal, 2: e1920, 2015.
[10] R. D. Chipman, L. D. Jennings, Phys. Rev. 132 (1995) 728; Greenberg, O. W., Yodh, G. B., Phys. Rev. Lett., 32,1974, p. 1473.
[11] H. Chen, G. F. Burgio, H. J. Schulze, N. Yasutake, ‘Structure of the hadron-quark mixed phase in protoneutron stars’, Astronomy & Astrophysics Journ., Vol. 551, March 2013, A13.
[12] M. G. Alford, K. Rajagopal et al., ‚Color Superconductivity in dense Quark Matter’, arXiv:0709.4635v2, 2008.
[13] Aaij, R. et al. (LHCb collaboration) "Observation of J/ψp resonances consistent with pentaquark states in Λ0b→J/ψK−p decays", Physical Review Letters, 115 (7), 2015; arXiv: 1507.03414 .
[14] Madsen, J., Phys. Rev. Lett. 85, 10, 2000.
[15] Merali, Z., ¸’Astronomers look to quark stars for a fifth dimension’, New Scientist, 23 June 2007.
[16] Arghirescu. M., ‘A Correspondence with the Bag Model of a Pre-quantum B.-E. Condensate Model of Nucleon’, IJHEP, Vol. 3, Issue 2, April, 10-17, 2016.
[17] Böhmer, C. G., Harko, T., ‘Can dark matter be a Bose-Einstein condensate?’; arXiv:0705.4158v4 [astro-ph] 21 Jun 2007.
[18] Saint-Venant, A. ‘Mémoire sur la théorie de la résistance des fluides. Solution du paradoxe proposé à ce sujet par d'Alembert aux géomètres. Comparaison de la théorie aux expériences", Comptes Rendus des Séances de l'Académie des Sciences, 24: 243–246, 1847.
[19] Tyron, E.P., “Is the Universe a Vacuum Fluctuation?” Nature vol. 246, 1973, p.p. 396–397.
Author Information
  • State Office for Inventions and Trademarks, Bucharest, Romania

Cite This Article
  • APA Style

    Marius Arghirescu. (2018). The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields. International Journal of High Energy Physics, 5(1), 12-22. https://doi.org/10.11648/j.ijhep.20180501.13

    Copy | Download

    ACS Style

    Marius Arghirescu. The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields. Int. J. High Energy Phys. 2018, 5(1), 12-22. doi: 10.11648/j.ijhep.20180501.13

    Copy | Download

    AMA Style

    Marius Arghirescu. The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields. Int J High Energy Phys. 2018;5(1):12-22. doi: 10.11648/j.ijhep.20180501.13

    Copy | Download

  • @article{10.11648/j.ijhep.20180501.13,
      author = {Marius Arghirescu},
      title = {The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields},
      journal = {International Journal of High Energy Physics},
      volume = {5},
      number = {1},
      pages = {12-22},
      doi = {10.11648/j.ijhep.20180501.13},
      url = {https://doi.org/10.11648/j.ijhep.20180501.13},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ijhep.20180501.13},
      abstract = {Through a preonic quasi-crystalline quark model, resulted as Bose-Einstein condensate of gammons: g*= (e+e-) and by a pre-quantum cold genesis theory of matter and fields, which predicted the existence of a preon z0 » 34 me experimentally evidenced in 2015, the elementary particles genesis is explained by the cold genesis of two preonic bosons with hexagonal symmetry: zp = 7z0; z2 = 4z0, which explains also the stability of quarks, by a mechanism with a first step of z*/(q± /q0) *- pre-cluster forming by magnetic interaction and a second step of z/(q± /q0)- collapsed cluster forming , with the aid of magnetic confinement, with z = (z0 , z2 , zp) and (q± /q0)- quark or pseudo-quark, resulting some predictions for bosonic dark matter constituents and for multi-quark particles of cold genesis, such as: 2450 me; 2685.4 me tetra-quark; 3063.8 me penta-quark; 2720 me, 3672.4 me hexa-quark; 3329 me, 4762.2 me hepta-quark.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields
    AU  - Marius Arghirescu
    Y1  - 2018/04/09
    PY  - 2018
    N1  - https://doi.org/10.11648/j.ijhep.20180501.13
    DO  - 10.11648/j.ijhep.20180501.13
    T2  - International Journal of High Energy Physics
    JF  - International Journal of High Energy Physics
    JO  - International Journal of High Energy Physics
    SP  - 12
    EP  - 22
    PB  - Science Publishing Group
    SN  - 2376-7448
    UR  - https://doi.org/10.11648/j.ijhep.20180501.13
    AB  - Through a preonic quasi-crystalline quark model, resulted as Bose-Einstein condensate of gammons: g*= (e+e-) and by a pre-quantum cold genesis theory of matter and fields, which predicted the existence of a preon z0 » 34 me experimentally evidenced in 2015, the elementary particles genesis is explained by the cold genesis of two preonic bosons with hexagonal symmetry: zp = 7z0; z2 = 4z0, which explains also the stability of quarks, by a mechanism with a first step of z*/(q± /q0) *- pre-cluster forming by magnetic interaction and a second step of z/(q± /q0)- collapsed cluster forming , with the aid of magnetic confinement, with z = (z0 , z2 , zp) and (q± /q0)- quark or pseudo-quark, resulting some predictions for bosonic dark matter constituents and for multi-quark particles of cold genesis, such as: 2450 me; 2685.4 me tetra-quark; 3063.8 me penta-quark; 2720 me, 3672.4 me hexa-quark; 3329 me, 4762.2 me hepta-quark.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

  • Sections