| Peer-Reviewed

Analysis on a Cast-Iron Pipe Applied to Protection of Underwater Cable

Received: 16 May 2016    Accepted:     Published: 19 May 2016
Views:       Downloads:
Abstract

In this study, a protection-pipe system is developed for the protection of undersea electricity power cable laid along shoreline with medium deep water. The protection-pipes are made from ductile cast-iron alloys while the dimensions are designed corresponding to the diameter of balk electricity power cables. In order to know if the protection-pipe is strong enough to prevent the power cable from damages caused unnaturally, such as berthing anchoring from large size ships or towing operation from fishing boats, both analytical and experimental studies were carried out. Presented in this paper is an analytical study based on the material mechanics. A finite element analytical method was applied and the deformed shapes on the protection-pipe were studied. Along with the deformation, the corresponding stresses were also presented. In order to know the response of the protection-pipe subjected to an impact loading exerting on various parts of the pipe, several analysis for various loadings and boundary conditions were performed. It was found from the results of the analysis that the proposed protection-pipes are able to meet the requirements of TPC set for the electricity power cable laid under seawater.

Published in International Journal of Materials Science and Applications (Volume 5, Issue 3)
DOI 10.11648/j.ijmsa.20160503.11
Page(s) 119-124
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Ductile Cast Iron, Structural Safety, Protection Pipe, Undersea Pipeline, Finite Element Analysis

References
[1] V. Sundar and, K. Subbiah, Studies on Wave Subsea Pipeline Interaction, Ocean Engineering, Vol. 11, No. 6, 1984, pp. 655-662.
[2] K. F. Lambrakos, Marine Pipeline Soil Friction Coefficients From In-situ Testing, Ocean Engineering, Vol. 12, No. 2, 1985, pp. 131-150.
[3] M. Zimmerman, Dynamic Behavior of Deep-Ocean pipeline, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 112, 1986, pp. 183-199.
[4] Y. Friedmann, Sea-bottom Forces Crucial in Pipeline Crossings Design, Oil and Gas Journal Vol. 86, 1988, pp. 47-50.
[5] B. C. Shah, C. N. White and I. J. Rippon, Design and Operational Considerations For Unsupported Offshore Pipeline Spans, SPE Production Engineering, Vol. 3, 1988, pp. 227-237.
[6] F. Raichlen and A. Watanabe, Wave Induced Forces on A Submarine Pipeline, Proceedings of the 7th International Offshore and Polar Engineering Conference, 1997, pp. 261-268. G.
[7] B. L. Joseton, U. Stogh and H. E. Hjelm, A Nonlinear Kinematic Hardening Model for Elastoplastic Deformations in Grey Cast Iron, J. of Engineering Materials and Technology, ASME, 1995, Vol. 117, pp. 145-150.
[8] W. Baer, A. Eberle, and D. Klingbeil, The Impact Of Ductile Cast Iron Fracture Behaviour On Dynamic Fracture Mechanics R-Curve Testing Using Key Curve Methods, Technical report, 2012, BAM Federal Institute for Materials Research and Testing, Germany.
[9] M. W. Schwartz, Recommendations for Ductile and Brittle Failure Design Criteria for Ductile Cast Iron Spent-Fuel Shipping Containers, Technical Reports, 1984, Lawrence Livermore National Laboratory, CA, USA.
[10] H. H. Lee, Performance of a Covering Pipe for the Protection of Underwater Cable Subjected to On- site Impact Loadings, Applied Mechanics and Materials, Vol. 82, 2011, pp. 810-815.
Cite This Article
  • APA Style

    Hsien Hua Lee. (2016). Analysis on a Cast-Iron Pipe Applied to Protection of Underwater Cable. International Journal of Materials Science and Applications, 5(3), 119-124. https://doi.org/10.11648/j.ijmsa.20160503.11

    Copy | Download

    ACS Style

    Hsien Hua Lee. Analysis on a Cast-Iron Pipe Applied to Protection of Underwater Cable. Int. J. Mater. Sci. Appl. 2016, 5(3), 119-124. doi: 10.11648/j.ijmsa.20160503.11

    Copy | Download

    AMA Style

    Hsien Hua Lee. Analysis on a Cast-Iron Pipe Applied to Protection of Underwater Cable. Int J Mater Sci Appl. 2016;5(3):119-124. doi: 10.11648/j.ijmsa.20160503.11

    Copy | Download

  • @article{10.11648/j.ijmsa.20160503.11,
      author = {Hsien Hua Lee},
      title = {Analysis on a Cast-Iron Pipe Applied to Protection of Underwater Cable},
      journal = {International Journal of Materials Science and Applications},
      volume = {5},
      number = {3},
      pages = {119-124},
      doi = {10.11648/j.ijmsa.20160503.11},
      url = {https://doi.org/10.11648/j.ijmsa.20160503.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20160503.11},
      abstract = {In this study, a protection-pipe system is developed for the protection of undersea electricity power cable laid along shoreline with medium deep water. The protection-pipes are made from ductile cast-iron alloys while the dimensions are designed corresponding to the diameter of balk electricity power cables. In order to know if the protection-pipe is strong enough to prevent the power cable from damages caused unnaturally, such as berthing anchoring from large size ships or towing operation from fishing boats, both analytical and experimental studies were carried out. Presented in this paper is an analytical study based on the material mechanics. A finite element analytical method was applied and the deformed shapes on the protection-pipe were studied. Along with the deformation, the corresponding stresses were also presented. In order to know the response of the protection-pipe subjected to an impact loading exerting on various parts of the pipe, several analysis for various loadings and boundary conditions were performed. It was found from the results of the analysis that the proposed protection-pipes are able to meet the requirements of TPC set for the electricity power cable laid under seawater.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Analysis on a Cast-Iron Pipe Applied to Protection of Underwater Cable
    AU  - Hsien Hua Lee
    Y1  - 2016/05/19
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ijmsa.20160503.11
    DO  - 10.11648/j.ijmsa.20160503.11
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 119
    EP  - 124
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20160503.11
    AB  - In this study, a protection-pipe system is developed for the protection of undersea electricity power cable laid along shoreline with medium deep water. The protection-pipes are made from ductile cast-iron alloys while the dimensions are designed corresponding to the diameter of balk electricity power cables. In order to know if the protection-pipe is strong enough to prevent the power cable from damages caused unnaturally, such as berthing anchoring from large size ships or towing operation from fishing boats, both analytical and experimental studies were carried out. Presented in this paper is an analytical study based on the material mechanics. A finite element analytical method was applied and the deformed shapes on the protection-pipe were studied. Along with the deformation, the corresponding stresses were also presented. In order to know the response of the protection-pipe subjected to an impact loading exerting on various parts of the pipe, several analysis for various loadings and boundary conditions were performed. It was found from the results of the analysis that the proposed protection-pipes are able to meet the requirements of TPC set for the electricity power cable laid under seawater.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan

  • Sections