| Peer-Reviewed

A First-Principles Study of a New Heusler Alloy

Received: 20 January 2017    Accepted: 22 February 2017    Published: 9 March 2017
Views:       Downloads:
Abstract

A full-Heusler alloy Ti2NiGa have been investigated by first-principles calculations. The electronic structures and magnetic properties have been obtained. The compound is predicted to be a new half-metal ferrimagnet. The calculations show that there is an energy gap in the minority spin of the band structures, whereas the other spin is strongly metallic, which results in a complete spin polarization of the conduction electrons at the Fermi level. This is the obvious feature of a half-metal. The compound has a total magnetic moment of 3.0 µB per unit cell on first-principles calculations which is in excellent agreement with the Slater–Pauling (SP) rule. The magnetic moments of Ti (A) atom and Ti (B) atoms are different. This difference comes from different atom coordination surroundings of Ti (A) and Ti (B) atoms in crystal structure.

Published in International Journal of Materials Science and Applications (Volume 6, Issue 2)
DOI 10.11648/j.ijmsa.20170602.17
Page(s) 108-111
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Heusler Alloy, Half-Metal Ferromagnet, First-Principles, Band Structure

References
[1] F. Heusler, Verh. Dtscht. Phys. Ges. 5, 219 (1903).
[2] J. Pierre, R. V. Skolozdra, Yu. K. Gorelenko and M. Konacou, J. Magn. Magn. Mater. 134, 95 (1994).
[3] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
[4] Lewis S. P, Allen P. B, and Sasaki T, Phys. Rev. B. 55, 10253 (1997).
[5] S. Ishida, T. Masaki, S. Fujii and S. Asano, Physica B. 245, 1 (1998).
[6] R. Weht and W. E. Pickett, Phys. Rev. B. 60, 13006 (1999).
[7] A. Kellow, N. E. Fenineche, T. Grosdidier, H. Aourag and C. Coddet, J. Appl. Phys. 94, 3292 (2003).
[8] S. Ishida, S. Kawakami and S. Asano, Mater. Trans. JIM. 45, 1065 (2004).
[9] Y. Miura, K. Nagano and M. Shirai, Phys. Rev. B. 69, 144413 (2004).
[10] S. Ishida, S. Sugimura, S. Fujii and S. Asano: J. Phys.: Condens. Matter Vol. 3, (1991), p. 5793.
[11] R. Y. Umetsu, K. Kobayashi, R. Kainuma, A. Fujita, K. Fukamichi, K. Ishida and A. Sakuma, Appl. Phys. Lett. 85, 2011 (2004).
[12] S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov and C. Felser, Appl. Phys. Lett. 88, 032503 (2006).
[13] J. Li, Y. Li, G. Zhou, Y. Sun and C. Q. Sun, Appl. Phys. Lett. 94, 242502 (2009).
[14] J. Li, G. F. Chen, J. F. Li, Y. X. Li and C. Q. Sun, Scripta Materialia. 59, 1107 (2008).
[15] J. Li, G. F. Chen, H. Y. Liu, Y. X. Li, J. F. Li and X. W. Xu, J. Magn. Magn. Mater. 322, 1 (2010).
[16] Lei Feng, Chengchun Tang, Shuangjin Wang, Wenchen He, J. alloys and compounds. 509, 5187 (2011).
[17] F. Ahmadian, J. Supercond Nov Magn. 26, Issue 2, 381 (2013).
[18] H. C. Kandpal, G. H. Fecher and C. Felser, J. Phys. D. 40, 1507 (2007).
[19] S. Sanvito and N. A. Hill, Phys. Rev. B. 62, 15553 (2000).
[20] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[21] E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B. 24, 864 (1981).
[22] M. Weinert, E. Wimmer and A. J. Freeman, Phys. Rev. B. 26, 4571 (1982).
[23] J. P. Perdew, J. A. Chevary, S. H. Vosko, A. Jackson, M. R. Pederson and C. Fiolhais, Phys. Rev. B. 46, 6671 (1992).
[24] I. Galanakis, P. H. Dederichs and N. Papamkolaou, Phys. Rev. B. 66, 174429 (2002).
[25] Kübler J, Physica B. 127, 257 (1984).
[26] Jung D, Koo HJ, Whangbo MH, J Mol Struct (Theochem). 527, 113 (2000).
[27] J. Li, Y. Li, X. Dai and X. Xu, J. Magn. Magn. Mater. 321, 365 (2009).
[28] K. Capelle and G. Vignale, Phys. Rev. Lett. 86, 5546 (2001).
Cite This Article
  • APA Style

    Chen Chen, Jingbo Ren, Zhenguo Wang, Lei Feng, Wufeng Jiang, et al. (2017). A First-Principles Study of a New Heusler Alloy. International Journal of Materials Science and Applications, 6(2), 108-111. https://doi.org/10.11648/j.ijmsa.20170602.17

    Copy | Download

    ACS Style

    Chen Chen; Jingbo Ren; Zhenguo Wang; Lei Feng; Wufeng Jiang, et al. A First-Principles Study of a New Heusler Alloy. Int. J. Mater. Sci. Appl. 2017, 6(2), 108-111. doi: 10.11648/j.ijmsa.20170602.17

    Copy | Download

    AMA Style

    Chen Chen, Jingbo Ren, Zhenguo Wang, Lei Feng, Wufeng Jiang, et al. A First-Principles Study of a New Heusler Alloy. Int J Mater Sci Appl. 2017;6(2):108-111. doi: 10.11648/j.ijmsa.20170602.17

    Copy | Download

  • @article{10.11648/j.ijmsa.20170602.17,
      author = {Chen Chen and Jingbo Ren and Zhenguo Wang and Lei Feng and Wufeng Jiang and Suju Hao},
      title = {A First-Principles Study of a New Heusler Alloy},
      journal = {International Journal of Materials Science and Applications},
      volume = {6},
      number = {2},
      pages = {108-111},
      doi = {10.11648/j.ijmsa.20170602.17},
      url = {https://doi.org/10.11648/j.ijmsa.20170602.17},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20170602.17},
      abstract = {A full-Heusler alloy Ti2NiGa have been investigated by first-principles calculations. The electronic structures and magnetic properties have been obtained. The compound is predicted to be a new half-metal ferrimagnet. The calculations show that there is an energy gap in the minority spin of the band structures, whereas the other spin is strongly metallic, which results in a complete spin polarization of the conduction electrons at the Fermi level. This is the obvious feature of a half-metal. The compound has a total magnetic moment of 3.0 µB per unit cell on first-principles calculations which is in excellent agreement with the Slater–Pauling (SP) rule. The magnetic moments of Ti (A) atom and Ti (B) atoms are different. This difference comes from different atom coordination surroundings of Ti (A) and Ti (B) atoms in crystal structure.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A First-Principles Study of a New Heusler Alloy
    AU  - Chen Chen
    AU  - Jingbo Ren
    AU  - Zhenguo Wang
    AU  - Lei Feng
    AU  - Wufeng Jiang
    AU  - Suju Hao
    Y1  - 2017/03/09
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijmsa.20170602.17
    DO  - 10.11648/j.ijmsa.20170602.17
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 108
    EP  - 111
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20170602.17
    AB  - A full-Heusler alloy Ti2NiGa have been investigated by first-principles calculations. The electronic structures and magnetic properties have been obtained. The compound is predicted to be a new half-metal ferrimagnet. The calculations show that there is an energy gap in the minority spin of the band structures, whereas the other spin is strongly metallic, which results in a complete spin polarization of the conduction electrons at the Fermi level. This is the obvious feature of a half-metal. The compound has a total magnetic moment of 3.0 µB per unit cell on first-principles calculations which is in excellent agreement with the Slater–Pauling (SP) rule. The magnetic moments of Ti (A) atom and Ti (B) atoms are different. This difference comes from different atom coordination surroundings of Ti (A) and Ti (B) atoms in crystal structure.
    VL  - 6
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • North China University of Science and Technology Qian'an College, Tangshan, China

  • North China University of Science and Technology Qian'an College, Tangshan, China

  • North China University of Science and Technology Qian'an College, Tangshan, China

  • North China University of Science and Technology Qian'an College, Tangshan, China; North China University of Science and Technology Metallurgy and Energy College, Tangshan, China

  • North China University of Science and Technology Metallurgy and Energy College, Tangshan, China

  • North China University of Science and Technology Metallurgy and Energy College, Tangshan, China

  • Sections