| Peer-Reviewed

Interactions Between Sodium Ion and Constituents of Chitosan: DFT Study

Received: 8 August 2015    Accepted: 19 August 2015    Published: 3 September 2015
Views:       Downloads:
Abstract

Glucosamine and acetylglucosamine are the constituents of chitosan and chitin natural biopolymers. In the present study, the structure and properties of the D-glucosamine monomer (A), N-acetylglucosamine monomer (B), and ion-molecular adducts with Na+ cation have been explored. The equilibrium geometrical structure, vibrational spectra of the species have been determined, using the DFT/B3LYP method with the 6-31G(d) basis set. Larger basis sets up to 6-311++G(d,p) were utilized to compute energies of reactions between Na+ ion and A and B molecules. The exothermicity and spontaneous character of the adducts formation reactions have been confirmed.

Published in International Journal of Materials Science and Applications (Volume 4, Issue 5)
DOI 10.11648/j.ijmsa.20150405.15
Page(s) 303-313
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

B3LYP, Glucosamine, Acetylglucosamine, Adduct, Geometrical Structure, Vibrational Spectrum, Energy and Enthalpy of Reaction

References
[1] A. L. Lehninger, “Principles of Biochemistry”, W.H. Freeman, 4th edition, 2004.
[2] R. Terreux, M. Domard, C. Viton, and A. Domard, "Interactions study between the copper II ion and constitutive elements of chitosan structure by DFT calculation," Biomacromolecules, vol. 7, pp. 31-37, 2006.
[3] J. K. Chen, C. R. Shen, and C. L. Liu. “N-Acetylglucosamine: Production and applications”. Marine drugs 8:9, 2010.
[4] E. A. El-hefian, M. M. Nasef, and A. H. Yahaya., “Preparation and Characterization of Chitosan/Polyvinyl Alcohol Blends-A Rheological Study”. E-Journal of Chemistry 7(S1):S349-S357, 2010.
[5] C. E. Olteanu “Applications of Functionalized Chitosan”. Scientific study and Research vol.,VIII:(3). 2007.
[6] G. Cardenas and S. P. Miranda, "FTIR and TGA studies of chitosan composite films," Journal of the Chilean Chemical Society, vol. 49, pp. 291-295, 2004
[7] I. Uzun, and G. Topal. “Synthesis and Physicochemical Characterization of Chitin Derivatives”. Journal of Chemistry 8, 2013.
[8] N. M. Yahya., “Study the Effect of some Physical Parameters on the Diffusion Properties of Prepared Alginate-Chitosan Capsule”. Raf. J. Sci 23:60-67, 2012.
[9] M. Benavente, "Adsorption of metallic ions onto chitosan: equilibrium and kinetic studies," pp. 1654-1081, 2008.
[10] H. Niu, and B. Volesky, “Characteristics of anionic metal species biosorption with waste crab shells”. Hydrometallurgy 71(1-2):209-215, 2003.
[11] G. Crini, N. Morin-Crini, N. Fatin-Rouge, S. Déon and P. Fievet, “Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan”. Arabian Journal of Chemistry (2014), http://dx.doi.org/10.1016/j.arabjc.2014.05.020
[12] R.A.A. Muzzarelli, “Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone”. Carbohydrate Polymers 76:167-182, 2009.
[13] A. Fattahi, M. Ghorat, A. Pourjavadi, M. Kurdtabar, and A. A. Torabi, "DFT/B3LYP Study of Thermochemistry of D-Glucosamine, a Representative Polyfunctional Bioorganic Compound," Scientia Iranica, vol. 15, pp. 422-429, 2008.
[14] I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, and Á. Heras, “Functional Characterization of Chitin and Chitosan”. Curr. Chem. Biol. 3:203-230, 2009.
[15] R.A.A. Muzzarelli, C. Jeunieux, and G.W. Gooday. “Chitin in Nature and Technology”. New York: Plenum Pres, 1985.
[16] Y. Luo, and Q. Wang. “Recent Advances of Chitosan and Its Derivatives for Novel Applications in Foood Science”. journal of Food Processing and Beverages 1, 2013.
[17] J. Azimov, Sh. Mamatkulov, N. Turaeva, B. L. Oxengendler, and S. Sh. Rashidova, “Computer modeling of chitosan adsorption on a carbon nanotube”. J Struct Chem, Vol. 53, No. 5, pp. 829-834, 2012.
[18] R.A.A. Muzzarelli, “Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review”. Carbohydrate Polymers 84:54-63, 2011.
[19] A. D. Becke, "Perspective: Fifty years of density-functional theory in chemical physics". The Journal of chemical physics 140:18A301, 2014.
[20] A. J. Cohen, P. Mori-Sánchez, and W. Yang, "Challenges for density functional theory". Chem. Rev. 112:289-320, 2011.
[21] I. Peña, L. Kolesniková, C. Cabezas, C. Bermúdez, M. Berdakin, A. Simão, and J. L. Alonso, “The shape of D-glucosamine”. Phys. Chem. Chem. Phys., 16:23244, 2014.
[22] I. Onoka, A. Pogrebnoi, T. Pogrebnaya, “Geometrical Structure, Vibrational Spectra and Thermodynamic Properties of Chitosan Constituents by DFT Method”. International Journal of Materials Science and Applications. Vol. 3, No. 4, 2014, pp. 121-128. doi: 10.11648/j.ijmsa.20140304.11
[23] A. A. Granovsky, Firefly version 8.1.0, www, 2014 http://classic.chem.msu.su/gran/firefly/index.html.
[24] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery. “General Atomic and Molecular Electronic Structure System”. J. Comput. Chem. 1993; 14:1347-1363; doi:10.1002/jcc. 540141112.
[25] HyperChem(TM), H., Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA.
[26] B. M. Bode, and M. S. Gordon, MacMolPlt version 7.4.2. J. Mol. Graphics and Modeling, 1998; 16,133‒138. Available: http://www.scl.ameslab.gov/MacMolPlt/.
[27] Chemcraft. Version 1.7 (build 132). G.A. Zhurko, D.A. Zhurko. HTML: www.chemcraftprog.com.
[28] M. Petrov, L. Lymperakis, M. Friák, and J. Neugebauer, “Ab Initio Based Conformational Study of the Crystalline a-Chitin”. Wiley periodicals, inc. Biopolymers, 99:22-34,2013. DOI 10.1002/bip.22131
[29] I. F. Amaral, P. L. Granja, and M. A. Barbosa. "Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study",. Journal of Biomaterials Science, Polymer Edition, 16:1575-1593, 2005.
[30] T. R. Sobahi, M. S. I. Makki, and M. Y. Abdelaal, "Carrier-mediated blends of Chitosan with polyvinyl chloride for different applications". Journal of Saudi Chemical Society 17:245-250, 2013.
[31] S. Kunjachan, S. Jose, and T. Lammers, "Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques," Asian journal of pharmaceutics, vol. 4, p. 148, 2010.
[32] K. Tokarev, "OpenThermo", v.1.0 Beta 1 (C) ed. http://openthermo.software.informer.com/, 2007-2009.
[33] L. V. Gurvich, V. S. Yungman, G. A. Bergman, I. V. Veitz, A. V. Gusarov, V. S. Iorish, V. Y. Leonidov, V. A. Medvedev, G. V. Belov, N. M. Aristova, L. N. Gorokhov, O. V. Dorofeeva, Y. S. Ezhov, M.E. Efimov, N. S. Krivosheya, I. Nazarenko, E. L. Osina, V. G. Ryabova, P. I. Tolmach, N. E. Chandamirova, E.A.Shenyavskaya, “Thermodynamic Properties of individual Substances. Ivtanthermo for Windows Database on Thermodynamic Properties of Individual Substances and Thermodynamic Modeling Software”, Version 3.0 (Glushko Thermocenter of RAS, Moscow, 1992-2000).
Cite This Article
  • APA Style

    Marwa Emmanuel, Alexander Pogrebnoi, Tatiana Pogrebnaya. (2015). Interactions Between Sodium Ion and Constituents of Chitosan: DFT Study. International Journal of Materials Science and Applications, 4(5), 303-313. https://doi.org/10.11648/j.ijmsa.20150405.15

    Copy | Download

    ACS Style

    Marwa Emmanuel; Alexander Pogrebnoi; Tatiana Pogrebnaya. Interactions Between Sodium Ion and Constituents of Chitosan: DFT Study. Int. J. Mater. Sci. Appl. 2015, 4(5), 303-313. doi: 10.11648/j.ijmsa.20150405.15

    Copy | Download

    AMA Style

    Marwa Emmanuel, Alexander Pogrebnoi, Tatiana Pogrebnaya. Interactions Between Sodium Ion and Constituents of Chitosan: DFT Study. Int J Mater Sci Appl. 2015;4(5):303-313. doi: 10.11648/j.ijmsa.20150405.15

    Copy | Download

  • @article{10.11648/j.ijmsa.20150405.15,
      author = {Marwa Emmanuel and Alexander Pogrebnoi and Tatiana Pogrebnaya},
      title = {Interactions Between Sodium Ion and Constituents of Chitosan: DFT Study},
      journal = {International Journal of Materials Science and Applications},
      volume = {4},
      number = {5},
      pages = {303-313},
      doi = {10.11648/j.ijmsa.20150405.15},
      url = {https://doi.org/10.11648/j.ijmsa.20150405.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20150405.15},
      abstract = {Glucosamine and acetylglucosamine are the constituents of chitosan and chitin natural biopolymers. In the present study, the structure and properties of the D-glucosamine monomer (A), N-acetylglucosamine monomer (B), and ion-molecular adducts with Na+ cation have been explored. The equilibrium geometrical structure, vibrational spectra of the species have been determined, using the DFT/B3LYP method with the 6-31G(d) basis set. Larger basis sets up to 6-311++G(d,p) were utilized to compute energies of reactions between Na+ ion and A and B molecules. The exothermicity and spontaneous character of the adducts formation reactions have been confirmed.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Interactions Between Sodium Ion and Constituents of Chitosan: DFT Study
    AU  - Marwa Emmanuel
    AU  - Alexander Pogrebnoi
    AU  - Tatiana Pogrebnaya
    Y1  - 2015/09/03
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijmsa.20150405.15
    DO  - 10.11648/j.ijmsa.20150405.15
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 303
    EP  - 313
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20150405.15
    AB  - Glucosamine and acetylglucosamine are the constituents of chitosan and chitin natural biopolymers. In the present study, the structure and properties of the D-glucosamine monomer (A), N-acetylglucosamine monomer (B), and ion-molecular adducts with Na+ cation have been explored. The equilibrium geometrical structure, vibrational spectra of the species have been determined, using the DFT/B3LYP method with the 6-31G(d) basis set. Larger basis sets up to 6-311++G(d,p) were utilized to compute energies of reactions between Na+ ion and A and B molecules. The exothermicity and spontaneous character of the adducts formation reactions have been confirmed.
    VL  - 4
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania; Dept. of Materials, Energy Science and Engineering, The NM-AIST, Arusha, Tanzania

  • The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania; Dept. of Materials, Energy Science and Engineering, The NM-AIST, Arusha, Tanzania

  • The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania; Dept. of Materials, Energy Science and Engineering, The NM-AIST, Arusha, Tanzania

  • Sections