American Journal of Modern Physics

| Peer-Reviewed |

Dark Matter Particle Detection System SQUID - Magnetic Calorimeter

Received: 20 May 2013    Accepted:     Published: 30 June 2013
Views:       Downloads:

Share This Article

Abstract

Physical principles underlying the concept of the Dark Matter (DM) are considered. Problems of Dark Matter particle detection are briefly reviewed. An original two-channel scheme for direct detection of cosmic DM particles is proposed. It is based on a super-low-temperature calorimeter and includes a nuclear spin system whose magnetic response is measured by a quantum interferometer (SQUID). Low threshold and the capability for efficiently suppressing the recoil-electron background are the most important advantages of the proposed scheme. They make it possible to detect DM particles with extremely low recoil energies and carry out direct DM search with high sensitivity.

DOI 10.11648/j.ajmp.20130204.15
Published in American Journal of Modern Physics (Volume 2, Issue 4, July 2013)
Page(s) 208-216
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

SQUID, Paramagnetism, Low Temperature, Dark Matter

References
[1] F. Zwicky. Helv. Phys. Acta. 6, 110 (1933).
[2] G. Bertone, Dan Hooper, J. Silk, arXiv:hep-ph/0404175 2, 13 Aug. (2004).
[3] G. Chardin. arXiv:astro-ph/0411503 3, 28 Feb. (2005).
[4] EROS Collaboration. Astron. Astrophys. 400, 951, astro-ph/0212176 (2003).
[5] B. Goldmann et al., (EROS Collaboration), Astron. Astrophys. 389, L69. (2002).
[6] N. Straumann. arXiv :hep-ph/0604231 1, 26 Apr. (2006).
[7] G. N. Izmailov, L. N. Zherikhina, V. A. Ryabov, and A. M. Tskhovrebov Chapter 1 in Dark Energy Theoreis, Developments, and Implications. Editors K. Lefebvre and R. Garcia. Nova Science Publishers 2010
[8] Spergel D N, Bean R, Doré O et al Astrophys. J. Suppl 170 377 (2007); astro-ph/0603449
[9] Cole S, Sanchez A G, Wilkins S; ASP Conf. Ser. 379 57 (2007); astro-ph/0611178
[10] Tegmark M, Eisenstein D, Strauss M et al Phys.Rev. D 74 123507 (2006); astro-ph/0608632
[11] Sanders R H, McGaugh S S Ann. Rev. Astron. Astrophys. 40 263 (2002); astro-ph/0204521
[12] Bertone G, Hooper D, Silk J Phys.Rept. 405 279 (2005); hep-ph/0404175
[13] Griest K, Kamionkowski M, Turner M Phys.Rev.Lett. 64 615 (1990)
[14] Hui L Phys.Rev.Lett. 86 3467 (2001)
[15] Taoso M, Bertone G, Masiero A ; astro-ph/0711.4996
[16] Ellis J, Hagelin J, Nanopoulos D Nucl.Phys. B 238 453 (1984)
[17] Jungman G, Kamionkowski M, Griest K Phys.Rep. 267 195 (1996); hep-ph/9506380
[18] Arkani-Hamed N, Dimopoulos S, Dvali G Phys.Lett. B 429 263 (1998); hep-ph/9803315
[19] Arkani-Hamed N, Dimopoulos S, Dvali G Phys.Rev. D 59 086004 (1999); hep-ph/9807344
[20] Randall L, Sundrum R Phys.Rev.Lett. 83 3370 (1999); hep-ph/9905221
[21] Randall L, Sundrum R Phys.Rev.Lett. 83 4690 (1999); hep-th/9906064
[22] Witten E Nucl.Phys. B 471 135 (1996); hep-th/9602070
[23] Lykken J DPhys.Rev D 54 3693 (1996); hep-th/9603133
[24] Antoniadis I, Dimopoulos S, Dvali G Nucl.Phys.B 516, 70 (1998); hep-ph/9710204
[25] Dienes K R, Dudas E, Gherghetta T Phys.Lett.B 436 55 (1998); hep-ph/9803466
[26] Appelquist T, Cheng H-C, Dobrescu B A Phys.Rev. D 62 035002 (2001); hep-ph/0012100
[27] Servant G, Tait T M P Nucl.Phys. 650, 391 (2003); hep-ph/0206071
[28] Baudis L Int.J.Mod.Phys. A 21 1925 (2006) ; astro-ph/0511805
[29] Morales A, Aalseth C E, Avignone F T et al Phys.Lett. B 489 268 (2000); hep-ex/0002053
[30] Klapdor-Kleingrothaus H V, Dietz A, Heusser G Astropart.Phys. 18 525 (2003); hep-ph/0206151
[31] Burgos S, Forbes J, Ghag C et al // submitted to Astroparticle Physics; hep-ex/0707.1488
[32] Santos D, Moulin E, Mayet F, Macias-Perez J J.Phys.Conf.Ser. 39 154 (2006); astro-ph/0512220
[33] Bernabei R, Belli P, Cappella F Int.J.Mod.Phys. D 13 2127 (2004); astro-ph/0501412
[34] Bernabei R Contributed paper to Neutrinoless Double Beta Decay (NDBD07), Ahmedabad (India), February 2007; astro-ph/0704.3543
[35] Ahmed B, Alner G J, Araujo H Astropart.Phys. 19 691 (2003); hep-ex/0301039
[36] Cebrian S, Amare J, Carmona J M et al Nucl.Phys.Proc.Suppl. 114 111 (2003); hep-ex/0211050
[37] Shimizu Y, Minowa M, Suganuma W, Inoue Y Phys.Lett. B 633 195 (2006); astro-ph/0510390
[38] Lee H S, Bhang H C, Choi J H et al Phys.Rev.Lett. 99 091301 (2007); astro-ph/0704.0423
[39] Fushimi K-I, Yasudai K, Kamedai Y et al Proc. of TAUP2007; nucl-ex/0711.3053
[40] Sumner T. Proc. of the 5-th Int. Symp. Sources and Detection of Dark Matter and Dark Energy in the Universe, Marina del Ray, 2002
[41] Cebrian S, Coron N, Dambier G et al Astropart.Phys. 15 79 (2001); astro-ph/0004292
[42] Angloher C et al Astropart.Phys. 18 43 (2002)
[43] Bolte W J, Collar J I, Crisler M et al Nucl. Instr. Meth. A 577 569 (2007); astro-ph/0503398
[44] Barnabe-Heider M, Behnke E, Clark K et al Phys.Lett. B 624 186 (2005); hep-ex/0502028
[45] Girard T A, Giuliani F, Morlat T et al Phys.Lett. B 233 621 (2005); hep-ex/0505053
[46] Borer K, Czapek G, Hasenbalg F et al Astropart.Phys. 22 199 (2004); astro-ph/0404311
[47] Angloher G, Bucci C, Christ P et al Astropart.Phys. 23 325 (2005); astro-ph/0408006
[48] Akerib D S, Alvaro-Dean J, Armel M S et al Phys.Rev. D 68 082002 (2003); hep-ex/0306001
[49] Sanglard V, Benoit A, Berge L. et al Phys.Rev. D 71 122002 (2005); astro-ph/0503265
[50] Alner G J, Araujo H M, Bewick A et al; astro-ph/0701858
[51] Akimov D Yu, Alner G J, Araujo H M Astropart.Phys. 27 46 (2007); astro-ph/0605500
[52] Angle J, Aprile E, Arneodo F et al Phys. Rev. Lett. 100 021303 (2008); astro-ph/0706.0039
[53] Benetti P, Acciarri R, Adamo F et al Submitted to Astroparticle Physics; astro-ph/0701286
[54] Laffranchi M., Rubbia A. Journal of Physics, Conference Series 65 012014 (2007); hep-ph/0702080
[55] O. V. Lounasmaa. Experimental principles and methods below 1K. (London and New York, Academic Press 1974).
[56] J. Low. Temp. Phys. 3, (1993).
[57] J. Clarke. Physics Today, March, 39 (3), 36 (1986).
[58] A. I. Golovashkin, G. N. Izmailov, L. N. Zherikhina et al., Kvant. Elektronika 36 (12), 1168 (2006).
[59] E. V. Bugaev, Yu. D. Kotov, and I. L. Rozental. Cosmic muons and neutrinos. (Atomizdat, Moscow, 1970).
[60] A. I. Golovashkin, G. N. Izmaïlov, G. V. Kuleshova, T. Q. Khánh, A. M. Tskhovrebov, L. N. Zherikhina, Magnetic calorimeter for registration of small energy release, Europe Physics Journal, 58, Number 3., 243-249 (2007).
Author Information
  • P. N. Lebedev Physical Institute RAS, Moscow, Russia

  • P. N. Lebedev Physical Institute RAS, Moscow, Russia

  • P. N. Lebedev Physical Institute RAS, Moscow, Russia

  • P. N. Lebedev Physical Institute RAS, Moscow, Russia

Cite This Article
  • APA Style

    Alexander I. Golovashkin, George N. Izmaïlov, Vladimir A. Ryabov, Andrey M. Tshovrebov, Larisa N. Zherikhina. (2013). Dark Matter Particle Detection System SQUID - Magnetic Calorimeter. American Journal of Modern Physics, 2(4), 208-216. https://doi.org/10.11648/j.ajmp.20130204.15

    Copy | Download

    ACS Style

    Alexander I. Golovashkin; George N. Izmaïlov; Vladimir A. Ryabov; Andrey M. Tshovrebov; Larisa N. Zherikhina. Dark Matter Particle Detection System SQUID - Magnetic Calorimeter. Am. J. Mod. Phys. 2013, 2(4), 208-216. doi: 10.11648/j.ajmp.20130204.15

    Copy | Download

    AMA Style

    Alexander I. Golovashkin, George N. Izmaïlov, Vladimir A. Ryabov, Andrey M. Tshovrebov, Larisa N. Zherikhina. Dark Matter Particle Detection System SQUID - Magnetic Calorimeter. Am J Mod Phys. 2013;2(4):208-216. doi: 10.11648/j.ajmp.20130204.15

    Copy | Download

  • @article{10.11648/j.ajmp.20130204.15,
      author = {Alexander I. Golovashkin and George N. Izmaïlov and Vladimir A. Ryabov and Andrey M. Tshovrebov and Larisa N. Zherikhina},
      title = {Dark Matter Particle Detection System SQUID - Magnetic Calorimeter},
      journal = {American Journal of Modern Physics},
      volume = {2},
      number = {4},
      pages = {208-216},
      doi = {10.11648/j.ajmp.20130204.15},
      url = {https://doi.org/10.11648/j.ajmp.20130204.15},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajmp.20130204.15},
      abstract = {Physical principles underlying the concept of the Dark Matter (DM) are considered. Problems of Dark Matter particle detection are briefly reviewed. An original two-channel scheme for direct detection of cosmic DM particles is proposed. It is based on a super-low-temperature calorimeter and includes a nuclear spin system whose magnetic response is measured by a quantum interferometer (SQUID). Low threshold and the capability for efficiently suppressing the recoil-electron background are the most important advantages of the proposed scheme. They make it possible to detect DM particles with extremely low recoil energies and carry out direct DM search with high sensitivity.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Dark Matter Particle Detection System SQUID - Magnetic Calorimeter
    AU  - Alexander I. Golovashkin
    AU  - George N. Izmaïlov
    AU  - Vladimir A. Ryabov
    AU  - Andrey M. Tshovrebov
    AU  - Larisa N. Zherikhina
    Y1  - 2013/06/30
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ajmp.20130204.15
    DO  - 10.11648/j.ajmp.20130204.15
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 208
    EP  - 216
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20130204.15
    AB  - Physical principles underlying the concept of the Dark Matter (DM) are considered. Problems of Dark Matter particle detection are briefly reviewed. An original two-channel scheme for direct detection of cosmic DM particles is proposed. It is based on a super-low-temperature calorimeter and includes a nuclear spin system whose magnetic response is measured by a quantum interferometer (SQUID). Low threshold and the capability for efficiently suppressing the recoil-electron background are the most important advantages of the proposed scheme. They make it possible to detect DM particles with extremely low recoil energies and carry out direct DM search with high sensitivity.
    VL  - 2
    IS  - 4
    ER  - 

    Copy | Download

  • Sections