Implementation of the 8-Nucleon Yakubovsky Formalism for Halo Nucleus 8He
American Journal of Modern Physics
Volume 8, Issue 3, May 2019, Pages: 40-49
Received: May 28, 2019; Accepted: Aug. 6, 2019; Published: Sep. 10, 2019
Views 613      Downloads 150
Eskandar Ahmadi Pouya, Physics Department, Shahrood University of Technology, Semnan, Iran
Ali Akbar Rajabi, Physics Department, Shahrood University of Technology, Semnan, Iran
Article Tools
Follow on us
In order to study the bound-state structure of the Helium halo nuclei, the 8-nucleon Yakubovsky formalism has been implemented for 8He in a 5-body sub-cluster model, i.e. α+n+n+n+n. In this case, the 8-nucleon Yakubovsky equations have been obtained in the form of two coupled equations, based on the two independent components. In addition, by removing the contribution interactions of the 8 and 7’s bound nucleons in the formalism, the obtained equations explicitly reduce to the 6-nucleon Yakubovsky equations for 6He, in the case of effective 3-body model, i.e. α+n+n. In view of the expectation for the dominant structure of 8He, namely an inert α-core and four loosely-bound neutrons, Jacobi configurations of the two components in momentum space have been represented to provide technicalities which were considered useful for a numerical performance, such as bound-state calculations and momentum density distributions for halo-bound neutrons.
8-Nucleon Yakubovsky Formalism, Halo Nucleus Helium-8, Effective α-core Structure, Jacobi Configurations, Bound State Problem, Halo-bound Neutrons
To cite this article
Eskandar Ahmadi Pouya, Ali Akbar Rajabi, Implementation of the 8-Nucleon Yakubovsky Formalism for Halo Nucleus 8He, American Journal of Modern Physics. Vol. 8, No. 3, 2019, pp. 40-49. doi: 10.11648/j.ajmp.20190803.12
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
M. Brodeur, et. al. Phys. Rev. Lett. 108, 052504 –31 Jan (2012).
M. V. Zhukov, et. al. Physics Reports, Volume 231, Issue 4, August (1993), Pages 151-199.
S. Bacca, A. Schwenk, G. Hagen, et. al. Eur. Phys. J. A, 42: 553 (2009).
L. B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004).
P. Mueller et al., Phys. Rev. Lett. 99, 252501 (2007).
V. L. Ryjkov et al., Phys. Rev. Lett. 101, 012501 (2008).
S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001); S. C. Pieper, arXiv: 0711.1500.
P. Navratil and W. E. Ormand, Phys. Rev. C 68, 034305 (2003).
P. Navratil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).
10. H. Kamada and W. Glӧckle, Nucl. Phys. A 548, 205 (1992).
A. Nogga, H. Kamada and W. Glöckle, Phys. Rev. Lett. 85, 944 (2000).
W. Glӧckle and H. Witala, Few-Body Syst. 51, 27-44 (2011).
E. Ahmadi Pouya and A. A. Rajabi, Acta, Phys, Pol, B 48: 1279 (2017).
E. Ahmadi Pouya and A. A. Rajabi, Eur. Phys. J. Plus, 131: 240 (2016).
A. C. Fonseca, Phys. Rev. C 30, 35 (1984).
W. Glöckle: The Quantum Mechanical Few-Body Problem. Springer-Verlag, New York (1983).
D. Huber, H. Witala, A. Nogga, W. Glӧckle and H. Kamada, Few-Body Syst. 22, 107 (1997).
E. Ahmadi Pouya and A. A. Rajabi, Karbala Int. J. of Mod. Science, Vol. 3, 4 (2017).
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186